НИИ ядерной физики при ТПУ: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
Нет описания правки
Нет описания правки
Строка 35: Строка 35:
Радиоактивные изотопы и радионуклидные препараты.  
Радиоактивные изотопы и радионуклидные препараты.  


Идеи ученых НИИ ЯФ при ТПИ получили признание мировой научной общественности. Это относится к бетатронам, особенно малогабаритным, инициатором в создании которых был А.А. Воробьев, и к наносекундным высоковольтным импульсным устройствам. Если на первом этапе разрабатывались только высоковольтные устройства для управления работой мощных лазеров и пузырьковых камер, то со временем круг таких исследований существенно расширился. На этой основе стали сооружаться сначала сильноточные электронные, а затем и сильноточные ионные ускорители. В последующем на основе сильноточных электронных ускорителей разрабатывались СВЧ-генераторы предельно возможного гигаваттного уровня мощности. Такие устройства вызвали широкое обсуждение на различных международных конференциях.
Идеи ученых НИИ ЯФ при ТПИ получили признание мировой научной общественности. Это относится к бетатронам, особенно малогабаритным, инициатором в создании которых был [[Воробьев Александр Акимович|А.А. Воробьев]], и к наносекундным высоковольтным импульсным устройствам. Если на первом этапе разрабатывались только высоковольтные устройства для управления работой мощных лазеров и пузырьковых камер, то со временем круг таких исследований существенно расширился. На этой основе стали сооружаться сначала сильноточные электронные, а затем и сильноточные ионные ускорители. В последующем на основе сильноточных электронных ускорителей разрабатывались СВЧ-генераторы предельно возможного гигаваттного уровня мощности. Такие устройства вызвали широкое обсуждение на различных международных конференциях.
 
Заслуживает серьезного внимания идея [[Воробьев Александр Акимович|А.А. Воробьева]] о существовании аномально большого прохождения высокоэнергетичных электронов через кристаллы и возможность разработки на этой основе нового типа ускорителей заряженных частиц на сверхвысокие энергии и нового источника мощного квазимонохроматического тормозного излучения. Сначала специалистами это было воспринято резко отрицательно. Однако в последующем эти идеи находят подтверждение в работах многих лабораторий мира и развиваются в НИИ ЯФ в рамках международного сотрудничества.  


Заслуживает серьезного внимания идея А.А. Воробьева о существовании аномально большого прохождения высокоэнергетичных электронов через кристаллы и возможность разработки на этой основе нового типа ускорителей заряженных частиц на сверхвысокие энергии и нового источника мощного квазимонохроматического тормозного излучения. Сначала специалистами это было воспринято резко отрицательно. Однако в последующем эти идеи находят подтверждение в работах многих лабораторий мира и развиваются в НИИ ЯФ в рамках международного сотрудничества. [1; 30-31]
Разработанные в НИИ ЯФ бетатронные дефектоскопы для проверки сохранности электрооборудования при внедрении в 1973г. дали экономический эффект в 600 тысяч рублей в год.  
Разработанные в НИИ ЯФ бетатронные дефектоскопы для проверки сохранности электрооборудования при внедрении в 1973г. дали экономический эффект в 600 тысяч рублей в год.  


Строка 44: Строка 45:
[[Файл:Koll.png|450px|right|thumb|]]
[[Файл:Koll.png|450px|right|thumb|]]


Работы по проектированию синхротрона начались в 1954г. по инициативе и под общим руководством ректора ТПИ А.А. Воробьева. Строительство и запуск ускорителя были проведены практически полностью силами ученых и инженеров ТПИ под руководством директора НИИ ядерной физики электроники и автоматики ТПУ (будущего ректора ТУСУРа, а затем ТПИ) [[Чучалин Иван Петрович|И.П. Чучалина]].  
Работы по проектированию синхротрона начались в 1954г. по инициативе и под общим руководством ректора ТПИ [[Воробьев Александр Аикмович|А.А. Воробьева]]. Строительство и запуск ускорителя были проведены практически полностью силами ученых и инженеров ТПИ под руководством директора НИИ ядерной физики электроники и автоматики ТПУ (будущего ректора ТУСУРа, а затем ТПИ) [[Чучалин Иван Петрович|И.П. Чучалина]].  


К началу 1964 г. сооружение синхротрона было закончено, для запуска и эксплуатации ускорителя был создан объект "Сириус".
К началу 1964 г. сооружение синхротрона было закончено, для запуска и эксплуатации ускорителя был создан объект "Сириус".


Ускоритель был запущен 28 февраля 1965 г. Первые эксперименты на синхротроне "Сириус" были посвящены вопросам динамики ускоряемых частиц. Затем последовали измерения характеристик синхротронного излучения и работы по обратному рассеянию фотонов лазерного излучения на пучке электронов в синхротроне. Позже, в 1977 – 1980 г.г., М.М. Никитиным были впервые проведены подробные исследования характеристик излучения пучка электронов в плоском ондуляторе.  
Ускоритель был запущен 28 февраля 1965 г. Первые эксперименты на синхротроне "Сириус" были посвящены вопросам динамики ускоряемых частиц. Затем последовали измерения характеристик синхротронного излучения и работы по обратному рассеянию фотонов лазерного излучения на пучке электронов в синхротроне. Позже, в 1977 – 1980 г.г., М.М. Никитиным были впервые проведены подробные исследования характеристик излучения пучка электронов в плоском ондуляторе.  
В 1960-х годах, параллельно с завершением работ по запуску синхротрона, были начаты работы по созданию аппаратуры для исследования когерентного тормозного излучения (КТИ) в ориентированных кри¬сталлах и по получению эксплуатационного пучка КТИ для экспериментов по физике элементарных частиц. Для этого, в 1968 г. был разработан, изготовлен и размещен в прямолинейном промежутке синхротрона прецизионный гониометр. В это же время был создан парный магнитный -спектрометр. В результате на кристалле алмаза был получен линейно-поляризованный пучок КТИ с величиной поляризации более 80%.  
В 1960-х годах, параллельно с завершением работ по запуску синхротрона, были начаты работы по созданию аппаратуры для исследования когерентного тормозного излучения (КТИ) в ориентированных кри¬сталлах и по получению эксплуатационного пучка КТИ для экспериментов по физике элементарных частиц. Для этого, в 1968 г. был разработан, изготовлен и размещен в прямолинейном промежутке синхротрона прецизионный гониометр. В это же время был создан парный магнитный -спектрометр. В результате на кристалле алмаза был получен линейно-поляризованный пучок КТИ с величиной поляризации более 80%.  


Строка 63: Строка 65:
Другим важным направлением исследований на синхротроне была физика взаимодействия ультрарелятивистских электронов с конденсированными средами. Это направление начало интенсивно развиваться в конце 70-х под руководством [[Потылицын Александр Петрович|А.П. Потылицына]].  
Другим важным направлением исследований на синхротроне была физика взаимодействия ультрарелятивистских электронов с конденсированными средами. Это направление начало интенсивно развиваться в конце 70-х под руководством [[Потылицын Александр Петрович|А.П. Потылицына]].  


Прецизионное измерение характеристик КТИ, проводившееся на [[Синхротрон "СИРИУС"|синхротроне “Сириус"]] во второй половине 70-х годов, показало наличие явных аномалий, которые не описывались теорией КТИ. Так, в эксперименте, проведенном на "Сириусе" с монокристаллом алмаза, был обнаружен эффект КТИ В. Началось исследование излучения при каналировании (ИК) релятивистских частиц. В эксперименте на «Сириусе» в 1978 г. впервые было показано, что радиационные потери имеют ярко выраженный максимум в случае движения электронов вдоль кристаллографической оси. Несколько позже аналогичные результаты были получены российско-американской группой на позитронном пучке Стэнфордского ускорителя и ереванской группой на синхротроне "АРУС". Обнаруженный эффект широко использовался впоследствии для ориентации кристаллических мишеней на многих ускорителях. Также целый ряд других характеристик ИК, измеренных впервые на синхротроне "Сириус", нашли свое подтверждение и развитие в экспериментах, поставленных на различных электронных ускорителях Европы, Японии и стран СНГ.  
Прецизионное измерение характеристик КТИ, проводившееся на [[Синхротрон "СИРИУС"|синхротроне “Сириус"]] во второй половине 70-х годов, показало наличие явных аномалий, которые не описывались теорией КТИ. Так, в эксперименте, проведенном на "Сириусе" с монокристаллом алмаза, был обнаружен эффект КТИ В. Началось исследование излучения при каналировании (ИК) релятивистских частиц. В эксперименте на «Сириусе» в 1978 г. впервые было показано, что радиационные потери имеют ярко выраженный максимум в случае движения электронов вдоль кристаллографической оси. Несколько позже аналогичные результаты были получены российско-американской группой на позитронном пучке Стэнфордского ускорителя и ереванской группой на синхротроне "АРУС". Обнаруженный эффект широко использовался впоследствии для ориентации кристаллических мишеней на многих ускорителях. Также целый ряд других характеристик ИК, измеренных впервые на [[Синхротрон "СИРИУС"|синхротроне "Сириус"]], нашли свое подтверждение и развитие в экспериментах, поставленных на различных электронных ускорителях Европы, Японии и стран СНГ.  


В качестве возможного приложения ИК была показана возможность создания эффективного источника позитронов на основе конвертора из ориентированного кристалла, которая была проверена в 1996 г. в российско-японском эксперименте на Токийском синхротроне. В 1998 г. аналогичный совместный эксперимент был проведен на линейном ускорителе Национальной лаборатории по физике высоких энергий (Цукуба, Япония).  
В качестве возможного приложения ИК была показана возможность создания эффективного источника позитронов на основе конвертора из ориентированного кристалла, которая была проверена в 1996 г. в российско-японском эксперименте на Токийском синхротроне. В 1998 г. аналогичный совместный эксперимент был проведен на линейном ускорителе Национальной лаборатории по физике высоких энергий (Цукуба, Япония).  


В 1985 г. в эксперименте, проведенном на "Сириусе", обнаружен новый тип излучения, названный параметрическим рентгеновским излучением (ПРИ). В дальнейшем, ха¬рактеристики ПРИ были исследованы на "Сириусе" с использованием современной аппаратуры (гониометр с азотным охлаждением, координатные рентгенов-ские детекторы, полупроводниковые спектрометры и др). Результаты пионерских экспериментов томской группы были подтверждены как теоретически, так и экспериментально во многих ускорительных лабораториях США, Японии, Канады, Германии.  
В 1985 г. в эксперименте, проведенном на "Сириусе", обнаружен новый тип излучения, названный параметрическим рентгеновским излучением (ПРИ). В дальнейшем, характеристики ПРИ были исследованы на [[Синхротрон "СИРИУС"|"Сириусе"]] с использованием современной аппаратуры (гониометр с азотным охлаждением, координатные рентгенов-ские детекторы, полупроводниковые спектрометры и др). Результаты пионерских экспериментов томской группы были подтверждены как теоретически, так и экспериментально во многих ускорительных лабораториях США, Японии, Канады, Германии.  


Проводилось исследование излучения релятивистских электронов в аморфных средах. Так, был впервые зарегистрирован эффект Ландау-Померанчука при излучении электронов с энергией менее 1 ГэВ. В 1996 г. было впервые зарегистрировано поляризационное тормозное излучение.  
Проводилось исследование излучения релятивистских электронов в аморфных средах. Так, был впервые зарегистрирован эффект Ландау-Померанчука при излучении электронов с энергией менее 1 ГэВ. В 1996 г. было впервые зарегистрировано поляризационное тормозное излучение.  


В 2000-е годы на синхротроне «Сириус» проведены два эксперимента. В одном исследовались изобарные конфигурации в ядрах. Была сделана оценка числа Delta-изобар в основном состоянии легких ядер.
В 2000-е годы на [[Синхротрон "СИРИУС"|синхротроне «Сириус»]] проведены два эксперимента. В одном исследовались изобарные конфигурации в ядрах. Была сделана оценка числа Delta-изобар в основном состоянии легких ядер.
   
   
Результаты другого эксперимента по фотообразованию отрицательных пионов на углероде были интерпретированы как проявление квазисвязанного состояния ядра и Delta-изобары (такие состояния были названы нами Delta-ядрами). На основе данных эксперимента были оценены масса и ширина Delta-ядра 11BΔ. Также выполнен анализ ранее полученных экспериментальных данных по фотообразованию пионов на ряде ядер в Майнце, Сакле и Томске. В результате, дополнительно обнаружены еще четыре Delta-ядра. Перспективы развития этой тематики связаны с продолжением исследований на электронном синхротроне «Пахра» ФИАНа в рамках договора о научно-техническом сотрудничестве между ТПУ и ФИАНом, подписанном в 2009 году.  
Результаты другого эксперимента по фотообразованию отрицательных пионов на углероде были интерпретированы как проявление квазисвязанного состояния ядра и Delta-изобары (такие состояния были названы нами Delta-ядрами). На основе данных эксперимента были оценены масса и ширина Delta-ядра 11BΔ. Также выполнен анализ ранее полученных экспериментальных данных по фотообразованию пионов на ряде ядер в Майнце, Сакле и Томске. В результате, дополнительно обнаружены еще четыре Delta-ядра. Перспективы развития этой тематики связаны с продолжением исследований на электронном синхротроне «Пахра» ФИАНа в рамках договора о научно-техническом сотрудничестве между ТПУ и ФИАНом, подписанном в 2009 году.  
Строка 87: Строка 89:
На исследовательском ядерном реакторе НИИ ЯФ  создана уникальная безотходная технология производства генераторов технеция-99 для радиологических лабораторий медицинских учреждений. Технологическая линия сдана в эксплуатацию комиссии Минздрава РФ в соответствии с международными требованиями на производство фармацевтических препаратов (GMP). Получены лицензии Минздрава РФ на производство и лицензии Госатомнадзора Сибирского округа РФ на производство, хранение и транспортировку генераторов технеция.   
На исследовательском ядерном реакторе НИИ ЯФ  создана уникальная безотходная технология производства генераторов технеция-99 для радиологических лабораторий медицинских учреждений. Технологическая линия сдана в эксплуатацию комиссии Минздрава РФ в соответствии с международными требованиями на производство фармацевтических препаратов (GMP). Получены лицензии Минздрава РФ на производство и лицензии Госатомнадзора Сибирского округа РФ на производство, хранение и транспортировку генераторов технеция.   


'''2004г.'''
'''2004 г.'''


В 2004 г. институт произвел и поставил радиофармпрепараты в медучреждения 18 городов сибирского региона.  
В 2004 г. институт произвел и поставил радиофармпрепараты в медучреждения 18 городов сибирского региона.  

Навигация