134 112
правок
Pvp (обсуждение | вклад) Нет описания правки |
Pvp (обсуждение | вклад) Нет описания правки |
||
Строка 56: | Строка 56: | ||
Две другие группы бетатронов первоначально разрабатывались в отделе бетатронов НИИ ЯФ, а в 1979 году этот отдел из НИИ ЯФ был переведен в состав НИИ ИН. Переносные малогабаритные бетатроны, предназначенные в основном для неразрушающего контроля в нестационарных условиях, начали разрабатываться под руководством Л.М.Ананьева, потом эти разработки продолжил аспирант Л.М.Ананьева В.Л.Чахлов. В создание малогабаритных бетатронов большой вклад внесли Чахлов В.Л., Ю.П.Ягушкин, М.М.Штейн, В.С.Пушин, А.А.Филимонов, В.Г.Волков, А.А.Звонцов, В.В.Романов, В.А.Касьянов, Ю.Д. Зрелов. Разработано несколько типов малогабаритных бетатронов на энергии от 1,5 до 7,5 МэВ. Уже в 1967-1968 гг. совместно с Томским приборным заводом был разработан серийный образец, а затем налажен промышленный выпуск малогабаритных плазмотронов. В 1969-1980 гг. было выпущено около 60 бетатронов. Десять из них были поставлены на экспорт в ГДР, Францию, Венгрию, Чехословакию, Польшу и Финляндию. | Две другие группы бетатронов первоначально разрабатывались в отделе бетатронов НИИ ЯФ, а в 1979 году этот отдел из НИИ ЯФ был переведен в состав НИИ ИН. Переносные малогабаритные бетатроны, предназначенные в основном для неразрушающего контроля в нестационарных условиях, начали разрабатываться под руководством Л.М.Ананьева, потом эти разработки продолжил аспирант Л.М.Ананьева В.Л.Чахлов. В создание малогабаритных бетатронов большой вклад внесли Чахлов В.Л., Ю.П.Ягушкин, М.М.Штейн, В.С.Пушин, А.А.Филимонов, В.Г.Волков, А.А.Звонцов, В.В.Романов, В.А.Касьянов, Ю.Д. Зрелов. Разработано несколько типов малогабаритных бетатронов на энергии от 1,5 до 7,5 МэВ. Уже в 1967-1968 гг. совместно с Томским приборным заводом был разработан серийный образец, а затем налажен промышленный выпуск малогабаритных плазмотронов. В 1969-1980 гг. было выпущено около 60 бетатронов. Десять из них были поставлены на экспорт в ГДР, Францию, Венгрию, Чехословакию, Польшу и Финляндию. | ||
Сильноточные бетатроны разрабатывались под руководством В.А.Москалева. Эти бетатроны способны за цикл ускорять заряд примерно в 10 раз больший, чем в обычных бетатронах, и используются, в основном, для контроля быстро протекающих процессов. В разработку сильноточных бетатронов большой вклад внесли В.Г.Шестаков, В.Я Гончаров и другие. В целом можно сказать, что семидесятые и восьмидесятые годы были благоприятными для развития института, институт интенсивно развивался, потребность в его разработках была огромная, но самое главное, что собранный коллектив был способен решать сложные и разнообразные задачи. И действительно, разработки появлялись как из рога изобилия, но мы-то понимаем, что за этим стоял огромный труд, способность и умение создавать новое и, конечно, особая творческая атмосфера. | Сильноточные бетатроны разрабатывались под руководством [[Москалев Владилен Александрович|В.А.Москалева]]. Эти бетатроны способны за цикл ускорять заряд примерно в 10 раз больший, чем в обычных бетатронах, и используются, в основном, для контроля быстро протекающих процессов. В разработку сильноточных бетатронов большой вклад внесли В.Г.Шестаков, В.Я Гончаров и другие. В целом можно сказать, что семидесятые и восьмидесятые годы были благоприятными для развития института, институт интенсивно развивался, потребность в его разработках была огромная, но самое главное, что собранный коллектив был способен решать сложные и разнообразные задачи. И действительно, разработки появлялись как из рога изобилия, но мы-то понимаем, что за этим стоял огромный труд, способность и умение создавать новое и, конечно, особая творческая атмосфера. | ||
В институте разрабатывались различные дефектоскопы и интроскопы с использованием жесткого тормозного излучения, генерируемого бетатронами, мягкого рентгеновского излучения нейтронов и электронов. Вопросы методики применения бетатронов для радиографии разрабатывались под руководством В.А.Бердоносова. | В институте разрабатывались различные дефектоскопы и интроскопы с использованием жесткого тормозного излучения, генерируемого бетатронами, мягкого рентгеновского излучения нейтронов и электронов. Вопросы методики применения бетатронов для радиографии разрабатывались под руководством В.А.Бердоносова. | ||
Строка 62: | Строка 62: | ||
Для контроля изделий малой плотности, в том числе для теплозащитных плиток космического корабля "Буран", совместно с СКБ Нальчикского завода электровакуумных приборов разработан и стал выпускаться серийно рентгенвидикон ЛИ-404Б с бериллиевым входным окном. | Для контроля изделий малой плотности, в том числе для теплозащитных плиток космического корабля "Буран", совместно с СКБ Нальчикского завода электровакуумных приборов разработан и стал выпускаться серийно рентгенвидикон ЛИ-404Б с бериллиевым входным окном. | ||
В.С.Мелиховым с сотрудниками был создан мозаичный интроскоп для прямого преобразования импульсного рентгеновского излучения в видеосигнал на основе датчиков из высокоомного кремния. На базе газоразрядных приборов под руководством А.С.Кулешова создан ряд интроскопов для контроля быстропротекающих процессов, медицинской диагностики в полевых условиях, таможенного контроля. В лаборатории Ф.М.Завьялкина создано несколько изотопных гамма-дефектоскопов, которые применялись, в основном, для контроля при производстве вооружения. Впервые был создан образец томографа на базе импульсного бетатрона на 4 МэВ. Этот томограф позволял контролировать с высоким разрешением стальные изделия толщиной до 180 мм. | [[Мелихов Всеволод Сергеевич|В.С.Мелиховым]] с сотрудниками был создан мозаичный интроскоп для прямого преобразования импульсного рентгеновского излучения в видеосигнал на основе датчиков из высокоомного кремния. На базе газоразрядных приборов под руководством А.С.Кулешова создан ряд интроскопов для контроля быстропротекающих процессов, медицинской диагностики в полевых условиях, таможенного контроля. В лаборатории Ф.М.Завьялкина создано несколько изотопных гамма-дефектоскопов, которые применялись, в основном, для контроля при производстве вооружения. Впервые был создан образец томографа на базе импульсного бетатрона на 4 МэВ. Этот томограф позволял контролировать с высоким разрешением стальные изделия толщиной до 180 мм. | ||
Под руководством О.И.Недавнего организовано серийное производство нескольких радиометрических приборов толщиномеров, плотномеров с использованием изотопов тормозного излучения. В развитие этого направления большой вклад внесли В.А.Забродский, [[Капранов Борис Иванович|Б.И.Капранов]], О.А.Сидуленко. В отделе, возглавляемом Г.Ш.Пекарским, было создано и внедрено в различные отрасли промышленности более 30 различных типов нейтронных радиометрических приборов для определения влажности, уровней жидкости в сосудах, толщиномеры, обнаружители закупорок в трубопроводах. | Под руководством О.И.Недавнего организовано серийное производство нескольких радиометрических приборов толщиномеров, плотномеров с использованием изотопов тормозного излучения. В развитие этого направления большой вклад внесли В.А.Забродский, [[Капранов Борис Иванович|Б.И.Капранов]], О.А.Сидуленко. В отделе, возглавляемом Г.Ш.Пекарским, было создано и внедрено в различные отрасли промышленности более 30 различных типов нейтронных радиометрических приборов для определения влажности, уровней жидкости в сосудах, толщиномеры, обнаружители закупорок в трубопроводах. |