133 804
правки
Pvp (обсуждение | вклад) Нет описания правки |
Pvp (обсуждение | вклад) Нет описания правки |
||
Строка 1: | Строка 1: | ||
'''Научно-исследовательский институт ядерной физики при ТПУ (НИИ ЯФ ТПУ)''' - НИИ при ТПУ, занимающийся исследованиями в области ядерной физики. | '''Научно-исследовательский институт ядерной физики при ТПУ (НИИ ЯФ ТПУ)''' - НИИ при [[ТПУ|Томском политехническом университете]], занимающийся исследованиями в области ядерной физики. | ||
==Создание и развитие== | ==Создание и развитие== | ||
Время после Великой Отечественной войны 1941- | Время после Великой Отечественной войны 1941 - 1945 гг. ознаменовалось бурным развитием атомной промышленности. Для этих целей были созданы крупные научные центры во многих городах страны, что привело к успешному испытанию в СССР атомной бомбы. И.В. Курчатовым и другими учеными на правительственном уровне был решен вопрос о необходимости и использовании достижений ядерной физики в народном хозяйстве. | ||
В начале 1950-х гг. во многих столицах союзных республик в системе Академии наук были созданы институты ядерной физики (Киев, Минск, Рига, Тбилиси, Ташкент, Алма-Ата), целью которых было внедрение методов ядерной физики в науку, медицину и промышленность своих республик. В Обнинске была запущена первая в мире АЭС. Стандартным набором физических установок, на основе которых создавались такие институты, были ядерный реактор, циклотрон и электростатический генератор. | В начале 1950-х гг. во многих столицах союзных республик в системе Академии наук были созданы институты ядерной физики (Киев, Минск, Рига, Тбилиси, Ташкент, Алма-Ата), целью которых было внедрение методов ядерной физики в науку, медицину и промышленность своих республик. В Обнинске была запущена первая в мире АЭС. Стандартным набором физических установок, на основе которых создавались такие институты, были ядерный реактор, циклотрон и электростатический генератор. | ||
Ректор ТПИ в 1944- | |||
Ректор ТПИ в 1944 - 1970 гг. А.А. Воробьев почувствовал благоприятное отношение руководства страны к ядерной физике и на правительственном уровне решил вопрос о создании такого же института в системе высшей школы. | |||
Планировалось, что материальной базой этого института должны быть не только необходимые для любого института ядерной физики такие установки, как ядерный реактор, циклотрон и электростатический генератор, но и электронные ускорители, в разработке которых ТПИ к тому времени имел серьезный задел, - обычные, сильноточные и малогабаритные бетатроны и самый большой в то время электронный синхротрон на энергию 1,5 ГэВ. | Планировалось, что материальной базой этого института должны быть не только необходимые для любого института ядерной физики такие установки, как ядерный реактор, циклотрон и электростатический генератор, но и электронные ускорители, в разработке которых ТПИ к тому времени имел серьезный задел, - обычные, сильноточные и малогабаритные бетатроны и самый большой в то время электронный синхротрон на энергию 1,5 ГэВ. | ||
Строка 31: | Строка 32: | ||
Трековые мембраны и технологии; | Трековые мембраны и технологии; | ||
Радиоактивные изотопы и радионуклидные препараты. | Радиоактивные изотопы и радионуклидные препараты. | ||
Идеи ученых НИИ ЯФ при ТПИ получили признание мировой научной общественности. Это относится к бетатронам, особенно малогабаритным, инициатором в создании которых был А.А. Воробьев, и к наносекундным высоковольтным импульсным устройствам. Если на первом этапе разрабатывались только высоковольтные устройства для управления работой мощных лазеров и пузырьковых камер, то со временем круг таких исследований существенно расширился. На этой основе стали сооружаться сначала сильноточные электронные, а затем и сильноточные ионные ускорители. В последующем на основе сильноточных электронных ускорителей разрабатывались СВЧ-генераторы предельно возможного гигаваттного уровня мощности. Такие устройства вызвали широкое обсуждение на различных международных конференциях. | Идеи ученых НИИ ЯФ при ТПИ получили признание мировой научной общественности. Это относится к бетатронам, особенно малогабаритным, инициатором в создании которых был А.А. Воробьев, и к наносекундным высоковольтным импульсным устройствам. Если на первом этапе разрабатывались только высоковольтные устройства для управления работой мощных лазеров и пузырьковых камер, то со временем круг таких исследований существенно расширился. На этой основе стали сооружаться сначала сильноточные электронные, а затем и сильноточные ионные ускорители. В последующем на основе сильноточных электронных ускорителей разрабатывались СВЧ-генераторы предельно возможного гигаваттного уровня мощности. Такие устройства вызвали широкое обсуждение на различных международных конференциях. | ||
Заслуживает серьезного внимания идея А.А. Воробьева о существовании аномально большого прохождения высокоэнергетичных электронов через кристаллы и возможность разработки на этой основе нового типа ускорителей заряженных частиц на сверхвысокие энергии и нового источника мощного квазимонохроматического тормозного излучения. Сначала специалистами это было воспринято резко отрицательно. Однако в последующем эти идеи находят подтверждение в работах многих лабораторий мира и развиваются в НИИ ЯФ в рамках международного сотрудничества. [1; 30-31] | Заслуживает серьезного внимания идея А.А. Воробьева о существовании аномально большого прохождения высокоэнергетичных электронов через кристаллы и возможность разработки на этой основе нового типа ускорителей заряженных частиц на сверхвысокие энергии и нового источника мощного квазимонохроматического тормозного излучения. Сначала специалистами это было воспринято резко отрицательно. Однако в последующем эти идеи находят подтверждение в работах многих лабораторий мира и развиваются в НИИ ЯФ в рамках международного сотрудничества. [1; 30-31] | ||
Разработанные в НИИ ЯФ бетатронные дефектоскопы для проверки сохранности электрооборудования при внедрении в 1973г. дали экономический эффект в 600 тысяч рублей в год. | Разработанные в НИИ ЯФ бетатронные дефектоскопы для проверки сохранности электрооборудования при внедрении в 1973г. дали экономический эффект в 600 тысяч рублей в год. | ||
'''Синхротрон «Сириус»''' | '''Синхротрон «Сириус»''' | ||
Строка 49: | Строка 50: | ||
В 1960-х годах, параллельно с завершением работ по запуску синхротрона, были начаты работы по созданию аппаратуры для исследования когерентного тормозного излучения (КТИ) в ориентированных кри¬сталлах и по получению эксплуатационного пучка КТИ для экспериментов по физике элементарных частиц. Для этого, в 1968 г. был разработан, изготовлен и размещен в прямолинейном промежутке синхротрона прецизионный гониометр. В это же время был создан парный магнитный -спектрометр. В результате на кристалле алмаза был получен линейно-поляризованный пучок КТИ с величиной поляризации более 80%. | В 1960-х годах, параллельно с завершением работ по запуску синхротрона, были начаты работы по созданию аппаратуры для исследования когерентного тормозного излучения (КТИ) в ориентированных кри¬сталлах и по получению эксплуатационного пучка КТИ для экспериментов по физике элементарных частиц. Для этого, в 1968 г. был разработан, изготовлен и размещен в прямолинейном промежутке синхротрона прецизионный гониометр. В это же время был создан парный магнитный -спектрометр. В результате на кристалле алмаза был получен линейно-поляризованный пучок КТИ с величиной поляризации более 80%. | ||
В 1968-1969 г.г. были получены первые экспериментальные результаты на пучках -квантов: измерено время жизни π0-мезона с лучшей в мире точностью и начались систематические измерения асимметрии фотообразования π+-мезонов на протонах. В это время были освоены современные методики и подготовлены детекторы частиц, по своим характеристикам не уступавшие зарубежным: - искровые камеры с высоковольтными источниками питания; - черенковские спектрометры полного поглощения; - время-пролетные сцинтилляционные системы с разрешением по времени 10-9 с. | В 1968 - 1969 г.г. были получены первые экспериментальные результаты на пучках - квантов: измерено время жизни π0-мезона с лучшей в мире точностью и начались систематические измерения асимметрии фотообразования π+-мезонов на протонах. В это время были освоены современные методики и подготовлены детекторы частиц, по своим характеристикам не уступавшие зарубежным: - искровые камеры с высоковольтными источниками питания; - черенковские спектрометры полного поглощения; - время-пролетные сцинтилляционные системы с разрешением по времени 10-9 с. | ||
После проведения в Томске в 1970 г. Всесоюзной школы по физике электромагнитных взаимодействий более интенсивно продолжились исследования по фотообразованию пионов на ядрах. Разработана новая экспериментальная аппаратура с высокими параметрами: пробежные искровые камеры, спектрометры гамма-квантов, гелиевая стримерная камера, сильнофокусирующий магнитный анализатор частиц и созданы двухплечевые установки для корреляционных исследований фотомезонных реакций на ядрах. | После проведения в Томске в 1970 г. Всесоюзной школы по физике электромагнитных взаимодействий более интенсивно продолжились исследования по фотообразованию пионов на ядрах. Разработана новая экспериментальная аппаратура с высокими параметрами: пробежные искровые камеры, спектрометры гамма-квантов, гелиевая стримерная камера, сильнофокусирующий магнитный анализатор частиц и созданы двухплечевые установки для корреляционных исследований фотомезонных реакций на ядрах. | ||
Был проведен ряд приоритетных исследований процессов фотообразования π- и η-мезонов на ядрах. В результате получены новые важные сведения о механизмах фотомезонных процессов на ядрах, о взаимодействии мезонов и нуклонов в конечном состоянии и структуре ядер. Многие из этих экспериментальных исследований отмечены Научным Советом РАН по «Физике электромагнитных взаимодействий» в числе лучших. | Был проведен ряд приоритетных исследований процессов фотообразования π- и η-мезонов на ядрах. В результате получены новые важные сведения о механизмах фотомезонных процессов на ядрах, о взаимодействии мезонов и нуклонов в конечном состоянии и структуре ядер. Многие из этих экспериментальных исследований отмечены Научным Советом РАН по «Физике электромагнитных взаимодействий» в числе лучших. | ||
Строка 61: | Строка 63: | ||
Прецизионное измерение характеристик КТИ, проводившееся на синхротроне “Сириус" во второй половине 70-х годов, показало наличие явных аномалий, которые не описывались теорией КТИ. Так, в эксперименте, проведенном на "Сириусе" с монокристаллом алмаза, был обнаружен эффект КТИ В. Началось исследование излучения при каналировании (ИК) релятивистских частиц. В эксперименте на «Сириусе» в 1978 г. впервые было показано, что радиационные потери имеют ярко выраженный максимум в случае движения электронов вдоль кристаллографической оси. Несколько позже аналогичные результаты были получены российско-американской группой на позитронном пучке Стэнфордского ускорителя и ереванской группой на синхротроне "АРУС". Обнаруженный эффект широко использовался впоследствии для ориентации кристаллических мишеней на многих ускорителях. Также целый ряд других характеристик ИК, измеренных впервые на синхротроне "Сириус", нашли свое подтверждение и развитие в экспериментах, поставленных на различных электронных ускорителях Европы, Японии и стран СНГ. | Прецизионное измерение характеристик КТИ, проводившееся на синхротроне “Сириус" во второй половине 70-х годов, показало наличие явных аномалий, которые не описывались теорией КТИ. Так, в эксперименте, проведенном на "Сириусе" с монокристаллом алмаза, был обнаружен эффект КТИ В. Началось исследование излучения при каналировании (ИК) релятивистских частиц. В эксперименте на «Сириусе» в 1978 г. впервые было показано, что радиационные потери имеют ярко выраженный максимум в случае движения электронов вдоль кристаллографической оси. Несколько позже аналогичные результаты были получены российско-американской группой на позитронном пучке Стэнфордского ускорителя и ереванской группой на синхротроне "АРУС". Обнаруженный эффект широко использовался впоследствии для ориентации кристаллических мишеней на многих ускорителях. Также целый ряд других характеристик ИК, измеренных впервые на синхротроне "Сириус", нашли свое подтверждение и развитие в экспериментах, поставленных на различных электронных ускорителях Европы, Японии и стран СНГ. | ||
В качестве возможного приложения ИК была показана возможность создания эффективного источника позитронов на основе конвертора из ориентированного кристалла, которая была проверена в 1996 г. в российско-японском эксперименте на Токийском синхротроне. В 1998 г. аналогичный совместный эксперимент был проведен на линейном ускорителе Национальной лаборатории по физике высоких энергий (Цукуба, Япония). | В качестве возможного приложения ИК была показана возможность создания эффективного источника позитронов на основе конвертора из ориентированного кристалла, которая была проверена в 1996 г. в российско-японском эксперименте на Токийском синхротроне. В 1998 г. аналогичный совместный эксперимент был проведен на линейном ускорителе Национальной лаборатории по физике высоких энергий (Цукуба, Япония). | ||
В 1985 | В 1985 г. в эксперименте, проведенном на "Сириусе", обнаружен новый тип излучения, названный параметрическим рентгеновским излучением (ПРИ). В дальнейшем, ха¬рактеристики ПРИ были исследованы на "Сириусе" с использованием современной аппаратуры (гониометр с азотным охлаждением, координатные рентгенов-ские детекторы, полупроводниковые спектрометры и др). Результаты пионерских экспериментов томской группы были подтверждены как теоретически, так и экспериментально во многих ускорительных лабора¬ториях США, Японии, Канады, Германии. | ||
Проводилось исследование излучения релятивистских электронов в аморфных средах. Так, был впервые зарегистрирован эффект Ландау-Померанчука при излучении электронов с энергией менее 1 ГэВ. В 1996 | Проводилось исследование излучения релятивистских электронов в аморфных средах. Так, был впервые зарегистрирован эффект Ландау-Померанчука при излучении электронов с энергией менее 1 ГэВ. В 1996 г. было впервые зарегистрировано поляризационное тормозное излучение. | ||
В 2000-е годы на синхротроне «Сириус» проведены два эксперимента. В одном исследовались изобарные конфигурации в ядрах. Была сделана оценка числа Delta-изобар в основном состоянии легких ядер. | В 2000-е годы на синхротроне «Сириус» проведены два эксперимента. В одном исследовались изобарные конфигурации в ядрах. Была сделана оценка числа Delta-изобар в основном состоянии легких ядер. | ||
Результаты другого эксперимента по фотообразованию отрицательных пионов на углероде были интерпретированы как проявление квазисвязанного состояния ядра и Delta-изобары (такие состояния были названы нами Delta-ядрами). На основе данных эксперимента были оценены масса и ширина Delta-ядра 11BΔ. Также выполнен анализ ранее полученных экспериментальных данных по фотообразованию пионов на ряде ядер в Майнце, Сакле и Томске. В результате, дополнительно обнаружены еще четыре Delta-ядра. Перспективы развития этой тематики связаны с продолжением исследований на электронном синхротроне «Пахра» ФИАНа в рамках договора о научно-техническом сотрудничестве между ТПУ и ФИАНом, подписанном в 2009 году. | Результаты другого эксперимента по фотообразованию отрицательных пионов на углероде были интерпретированы как проявление квазисвязанного состояния ядра и Delta-изобары (такие состояния были названы нами Delta-ядрами). На основе данных эксперимента были оценены масса и ширина Delta-ядра 11BΔ. Также выполнен анализ ранее полученных экспериментальных данных по фотообразованию пионов на ряде ядер в Майнце, Сакле и Томске. В результате, дополнительно обнаружены еще четыре Delta-ядра. Перспективы развития этой тематики связаны с продолжением исследований на электронном синхротроне «Пахра» ФИАНа в рамках договора о научно-техническом сотрудничестве между ТПУ и ФИАНом, подписанном в 2009 году. | ||
Строка 78: | Строка 82: | ||
В 2008 г. было открыто новое направления исследований – изучение динамики поля релятивистских заряженных частиц в миллиметровом диапазоне длин волн. Получены экспериментальные результаты, подтверждающие существование нестабильных состояний электронов с частичной потерей кулоновского поля. Начаты работы по исследованию черенковского излучения электронов, также в миллиметровом диапазоне длин волн. | В 2008 г. было открыто новое направления исследований – изучение динамики поля релятивистских заряженных частиц в миллиметровом диапазоне длин волн. Получены экспериментальные результаты, подтверждающие существование нестабильных состояний электронов с частичной потерей кулоновского поля. Начаты работы по исследованию черенковского излучения электронов, также в миллиметровом диапазоне длин волн. | ||
В 2011 г. открыто ещё одно новое направление – исследование взаимодействия поля релятивистских заряженных частиц с мета-материалами в миллиметровом диапазоне длин волн. Мета-материалы – это не существующие в природе структуры материалов, обладающие уникальными радиационными свойствами, такими, как отрицательный коэффициент преломления и др. В этом направлении в мире экспериментальные исследования ещё не проводились. | В 2011 г. открыто ещё одно новое направление – исследование взаимодействия поля релятивистских заряженных частиц с мета-материалами в миллиметровом диапазоне длин волн. Мета-материалы – это не существующие в природе структуры материалов, обладающие уникальными радиационными свойствами, такими, как отрицательный коэффициент преломления и др. В этом направлении в мире экспериментальные исследования ещё не проводились. | ||
На исследовательском ядерном реакторе НИИ ЯФ создана уникальная безотходная технология производства генераторов технеция-99 для радиологических лабораторий медицинских учреждений. Технологическая линия сдана в эксплуатацию комиссии Минздрава РФ в соответствии с международными требованиями на производство фармацевтических препаратов (GMP). Получены лицензии Минздрава РФ на производство и лицензии Госатомнадзора Сибирского округа РФ на производство, хранение и транспортировку генераторов технеция. | На исследовательском ядерном реакторе НИИ ЯФ создана уникальная безотходная технология производства генераторов технеция-99 для радиологических лабораторий медицинских учреждений. Технологическая линия сдана в эксплуатацию комиссии Минздрава РФ в соответствии с международными требованиями на производство фармацевтических препаратов (GMP). Получены лицензии Минздрава РФ на производство и лицензии Госатомнадзора Сибирского округа РФ на производство, хранение и транспортировку генераторов технеция. | ||
'''2004г.''' | '''2004г.''' | ||
В 2004 | В 2004 г. институт произвел и поставил радиофармпрепараты в медучреждения 18 городов сибирского региона. | ||
В рамках международной программы с участием фонда CRDF на базе института создан "Центр измерения физических и эксплуатационных свойств новых материалов и покрытий (ЦИСМ)". Центр оснащен самым современным оборудованием для исследования свойств материалов. Совместно с другими организациями, Центр участвует в нескольких научных и инновационных проектах. В 2004 году ЦИСМ оказал услуги по измерению элементного состава, микроструктуры и свойств различных материалов организациям научно-образовательного комплекса и промышленным предприятиям Томска и Сибири. | В рамках международной программы с участием фонда CRDF на базе института создан "Центр измерения физических и эксплуатационных свойств новых материалов и покрытий (ЦИСМ)". Центр оснащен самым современным оборудованием для исследования свойств материалов. Совместно с другими организациями, Центр участвует в нескольких научных и инновационных проектах. В 2004 году ЦИСМ оказал услуги по измерению элементного состава, микроструктуры и свойств различных материалов организациям научно-образовательного комплекса и промышленным предприятиям Томска и Сибири. | ||
Строка 123: | Строка 127: | ||
В институте освоено полупромышленное производство ядерно-легированного кремния и радиофармпрепаратов, ядерных фильтров и технологий широкого спектра применения, технологических установок для модификации поверхности материалов. [6] | В институте освоено полупромышленное производство ядерно-легированного кремния и радиофармпрепаратов, ядерных фильтров и технологий широкого спектра применения, технологических установок для модификации поверхности материалов. [6] | ||
''' | '''2006 г.''' | ||
В рамках Аналитической ведомственной целевой программы Рособразования «Развитие научного потенциала высшей школы» в 2006 году институт выполнял 14 НИР по разделу 1.1 (по темплану), один проект по разделу 2.1 «Фундаментальные исследования». Одна НИР проведена по заданию Рособразования в рамках обеспечения деятельности организаций, в состав которых входят особо радиационно- и ядерно-опасные производства и объекты. | В рамках Аналитической ведомственной целевой программы Рособразования «Развитие научного потенциала высшей школы» в 2006 году институт выполнял 14 НИР по разделу 1.1 (по темплану), один проект по разделу 2.1 «Фундаментальные исследования». Одна НИР проведена по заданию Рособразования в рамках обеспечения деятельности организаций, в состав которых входят особо радиационно- и ядерно-опасные производства и объекты. | ||
Строка 208: | Строка 212: | ||
'''Лаборатория 23 НИИ ЯФ ТПУ''' | '''Лаборатория 23 НИИ ЯФ ТПУ''' | ||
Была создана 20 | Была создана 20.02.1986 г. и сделала себе имя на изучении процессов взаимодействия мощных радиационных полей с твердым телом. Исследования были ориентированы на решение проблем, связанных с повышением радиационной стойкости изделий электронной техники на космических летательных аппаратах. | ||
Параллельно были инициированы работы по технологическому применению пучков заряженных частиц и плазмы, которые постепенно стали основными в тематике лаборатории. | Параллельно были инициированы работы по технологическому применению пучков заряженных частиц и плазмы, которые постепенно стали основными в тематике лаборатории. | ||
Строка 219: | Строка 223: | ||
Разработка оборудования для осаждения модифицирующих покрытий на поверхность твердых тел с помощью пучков заряженных частиц и плазмы магнетронного разряда. | Разработка оборудования для осаждения модифицирующих покрытий на поверхность твердых тел с помощью пучков заряженных частиц и плазмы магнетронного разряда. | ||
Руководитель: д.ф-м.н., профессор В.П. Кривобоков. | Руководитель: д.ф-м.н., профессор В.П. Кривобоков. | ||
Научные исследования лаборатории направлены на изучение механизмов взаимодействия пучков заряженных частиц и плазмы с поверхностью твердого тела. | Научные исследования лаборатории направлены на изучение механизмов взаимодействия пучков заряженных частиц и плазмы с поверхностью твердого тела. | ||
Строка 227: | Строка 231: | ||
Наиболее важная задача в разработке радиационных технологий - прогноз изменения структурно-фазового состояния облученной поверхности. | Наиболее важная задача в разработке радиационных технологий - прогноз изменения структурно-фазового состояния облученной поверхности. | ||
Основное внимание сосредоточено на процессах, имеющих место при не очень больших плотностях потока энергии, когда в облучаемом веществе могут существовать любые фазовые состояния. Эта ситуация сопряжена с необходимостью использовать самые сложные варианты модели, но она имеет наибольшее практическое значение, так как именно в данной области проявляются максимальные технологические возможности импульсных ускорителей. | Основное внимание сосредоточено на процессах, имеющих место при не очень больших плотностях потока энергии, когда в облучаемом веществе могут существовать любые фазовые состояния. Эта ситуация сопряжена с необходимостью использовать самые сложные варианты модели, но она имеет наибольшее практическое значение, так как именно в данной области проявляются максимальные технологические возможности импульсных ускорителей. | ||
В области исследования плазмы в системах со скрещенными электрическим и магнитными полями лаборатория работает по следующим направлениям: | В области исследования плазмы в системах со скрещенными электрическим и магнитными полями лаборатория работает по следующим направлениям: | ||
Строка 276: | Строка 280: | ||
'''Нейтронная терапия''' | '''Нейтронная терапия''' | ||
Использование рентгеновского излучения для лечения раковых опухолей и других заболеваний в мире началось буквально через несколько месяцев после открытия В. Рентгена в | Использование рентгеновского излучения для лечения раковых опухолей и других заболеваний в мире началось буквально через несколько месяцев после открытия В. Рентгена в 1895 г. | ||
В СССР и в России центров нейтронной терапии не имелось. После детального ознакомления отечественных ученых с зарубежным опытом применения нейтронов в онкологии, РАМН и Онкологический научный центр им. Н.Н. Блохина (Москва) в 1979г. обратились к физическим лабораториям страны с предложением организовать центр нейтронной терапии. На это предложение откликнулся только НИИ ЯФ при ТПУ. Понимая важность и престижность этой работы, сотрудники НИИ ЯФ за короткий период разработали и создали нейтронный канал, коллиматор нейтронов и физическую защиту, специальное кресло, была подготовлена процедурная комната, выделены необходимые помещения и необходимая измерительная аппаратура. Создание центра нейтронной терапии как нового для России вида лечения злокачественных опухолей было обусловлено тем обстоятельством, что по соседству с НИИ ЯФ открывался НИИ онкологии ТНЦ СО РАМН. Применение циклотронных быстрых нейтронов в онкологии впервые в России началось в 1983 году, когда на циклотроне Р-7М НИИ ЯФ был смонтирован нейтронный канал циклотрона, создан центр нейтронной терапии и пролечен первый онкологический больной. Ввиду сравнительно небольшой средней энергии нейтронов (около 7,5 МэВ) учеными НИИ онкологии ТНЦ СО РАМН было выбрано направление преимущественного лечения поверхностно расположенных опухолей в области головы и шеи. Ими же были разработаны и научные методы планирования нейтронной терапии, а также методы смешанной нейтронно-фотонной терапии и нейтронной терапии в совокупности с химиотерапией. После создания в НИИ онкологии ТНЦ СО РАМН маммологического центра нейтронная терапия стала проводиться и больным с опухолями молочной железы, а также с опухолями щитовидной железы. | В СССР и в России центров нейтронной терапии не имелось. После детального ознакомления отечественных ученых с зарубежным опытом применения нейтронов в онкологии, РАМН и Онкологический научный центр им. Н.Н. Блохина (Москва) в 1979г. обратились к физическим лабораториям страны с предложением организовать центр нейтронной терапии. На это предложение откликнулся только НИИ ЯФ при ТПУ. Понимая важность и престижность этой работы, сотрудники НИИ ЯФ за короткий период разработали и создали нейтронный канал, коллиматор нейтронов и физическую защиту, специальное кресло, была подготовлена процедурная комната, выделены необходимые помещения и необходимая измерительная аппаратура. Создание центра нейтронной терапии как нового для России вида лечения злокачественных опухолей было обусловлено тем обстоятельством, что по соседству с НИИ ЯФ открывался НИИ онкологии ТНЦ СО РАМН. Применение циклотронных быстрых нейтронов в онкологии впервые в России началось в 1983 году, когда на циклотроне Р-7М НИИ ЯФ был смонтирован нейтронный канал циклотрона, создан центр нейтронной терапии и пролечен первый онкологический больной. Ввиду сравнительно небольшой средней энергии нейтронов (около 7,5 МэВ) учеными НИИ онкологии ТНЦ СО РАМН было выбрано направление преимущественного лечения поверхностно расположенных опухолей в области головы и шеи. Ими же были разработаны и научные методы планирования нейтронной терапии, а также методы смешанной нейтронно-фотонной терапии и нейтронной терапии в совокупности с химиотерапией. После создания в НИИ онкологии ТНЦ СО РАМН маммологического центра нейтронная терапия стала проводиться и больным с опухолями молочной железы, а также с опухолями щитовидной железы. | ||
Строка 298: | Строка 302: | ||
==Директора НИИ ЯФ== | ==Директора НИИ ЯФ== | ||
'''Чучалин Иван Петрович''' (директор НИИ ЯФ ТПИ в 1958- | '''Чучалин Иван Петрович''' (директор НИИ ЯФ ТПИ в 1958 - 1968 гг.) – доктор технических наук, профессор, Заслуженный деятель науки и техники РСФСР (1985 г.). | ||
Под руководством И.П. Чучалина в НИИ ЯФ была создана уникальная научно-техническая база, включавшая сложные электрофизические установки: бетатроны, микротроны, циклотрон, электростатический генератор. Он принял активное участие в создании синхротрона «Сириус» на 1,5 ГэВ, руководил работами по системе питания электромагнита, системы инжекции, по проведению пуско-наладочных работ и др. Запущенный в феврале 1965г. синхротрон «Сириус» являлся самым мощным в стране и одним из крупнейших в мире. На нем был проведен большой объем фундаментальных исследований по физике ускорения заряженных частиц, физике ядра и элементарных частиц, физике твердого тела. Многие сотрудники, участвовавшие в создании синхротрона и проводившие на нем исследования, стали крупными учеными, докторами, кандидатами наук. На синхротроне проводятся научные исследования, в том числе совместно с учеными из США, Японии. | Под руководством И.П. Чучалина в НИИ ЯФ была создана уникальная научно-техническая база, включавшая сложные электрофизические установки: бетатроны, микротроны, циклотрон, электростатический генератор. Он принял активное участие в создании синхротрона «Сириус» на 1,5 ГэВ, руководил работами по системе питания электромагнита, системы инжекции, по проведению пуско-наладочных работ и др. Запущенный в феврале 1965г. синхротрон «Сириус» являлся самым мощным в стране и одним из крупнейших в мире. На нем был проведен большой объем фундаментальных исследований по физике ускорения заряженных частиц, физике ядра и элементарных частиц, физике твердого тела. Многие сотрудники, участвовавшие в создании синхротрона и проводившие на нем исследования, стали крупными учеными, докторами, кандидатами наук. На синхротроне проводятся научные исследования, в том числе совместно с учеными из США, Японии. | ||
В июле | В июле 1967 г. осуществлен запуск исследовательского атомного реактора ИРТ-1000. В сооружении объектов реактора и жилого поселка «Спутник» Ч. внес большой вклад. Исследовательский реактор НИИ ЯФ – единственный на территории Сибири и Д. Востока, на нем проводятся исследования, связанные с изучением природных ресурсов, развития производственных сил, практической медицины этого региона. НИИ ЯФ стал базой подготовки научных и инженерных кадров для ряда направлений науки и техники, в т.ч. оборонной промышленности. Ныне это один из ведущих НИИ ядерно-физического профиля в системе высшего образования. Научные исследования сотрудников института получили признание научной общественности в стране и за рубежом. | ||
В 1968- | В 1968 - 1970 гг. – старший научный сотрудник НИИ ЯФ – докторант. Докторская диссертация им защищена в Совете ТПИ в январе 1971 г. на тему «Основные вопросы разработки, исследование и усовершенствование синхротрона на 1,5 ГэВ». С 1970 по 1972гг. – научный руководитель объекта «Сириус» НИИ ЯФ, возглавлял сектор высоких энергий для подготовки и проведения физических экспериментов. | ||
[[Файл:Did.jpg|200px|right|thumb|А.Н. Диденко]] | [[Файл:Did.jpg|200px|right|thumb|А.Н. Диденко]] | ||
'''Диденко Андрей Николаевич''' (директор НИИ ЯФ в 1968- | '''Диденко Андрей Николаевич''' (директор НИИ ЯФ в 1968 - 1988 гг.) – доктор физико-математических наук, профессор, член-корреспондент РАН. | ||
За период его деятельности в НИИ ЯФ при ТПИ была создана томская школа физиков-ядерщиков, получившая широкую известность в стране и за рубежом. | За период его деятельности в НИИ ЯФ при ТПИ была создана томская школа физиков-ядерщиков, получившая широкую известность в стране и за рубежом. | ||
На базе уникального комплекса электронных и протонных ускорителей с широким диапазоном энергии заряженных частиц, включающего электронный синхротрон на 1500 МэВ «Сириус», сильноточный бетатрон на 25 МэВ, электростатический генератор на 2,5 МэВ, циклотрон с диаметром полюсов 1,2 м, исследовательский реактор, сильноточный ускоритель «Тонус» и др., были проведены исследования по широкому кругу проблем в области ядерной физики, в том числе физики высокотемпературной плазмы, физической электроники и др., подготовлен большой отряд ученых, специалистов. Большое внимание уделял внедрению результатов исследований института в народное хозяйство. | На базе уникального комплекса электронных и протонных ускорителей с широким диапазоном энергии заряженных частиц, включающего электронный синхротрон на 1500 МэВ «Сириус», сильноточный бетатрон на 25 МэВ, электростатический генератор на 2,5 МэВ, циклотрон с диаметром полюсов 1,2 м, исследовательский реактор, сильноточный ускоритель «Тонус» и др., были проведены исследования по широкому кругу проблем в области ядерной физики, в том числе физики высокотемпературной плазмы, физической электроники и др., подготовлен большой отряд ученых, специалистов. Большое внимание уделял внедрению результатов исследований института в народное хозяйство. | ||
'''Усов Юрий Петрович''' (директор НИИ ЯФ в 1988- | '''Усов Юрий Петрович''' (директор НИИ ЯФ в 1988 - 1997 гг.) – доктор технических наук, профессор. | ||
На годы директорства | На годы директорства Усова НИИ ЯФ пришлось самое тяжелое время для российской науки в ее новейшей истории. Для НИИ ЯФ это был особенно трудный период, т. к. основная его научная тематика ориентирована на фундаментальные исследования, базирующиеся на дорогостоящих экспериментах с использованием энергоемкого крупномасштабного оборудования. Резкое сокращение бюджетного финансирования, практически полное отсутствие заказов по оборонной тематике, наличие в «хозяйстве» НИИ ЯФ атомного реактора с поселком-спутником, целой галемы ускорителей заряженных частиц, включая синхротрон «Сириус», потребовали от всего коллектива НИИ ЯФ, руководства ТПУ огромных усилий по спасению института. Большая тяжесть лежала на плечах директора НИИ ЯФ У. Институт выстоял, хотя и с серьезными потерями высококвалифицированных кадров, и начал постепенно восстанавливать свой потенциал. | ||
Заслуга | Заслуга Усова в том, что опираясь на коллектив, он сумел удержать институт на плаву, а затем и придать движение в направлении развития. Был решён ряд серьёзных задач. | ||
Во-первых, удалось сдать 9-этажный жилой дом, в котором многие из сотрудников НИИ ЯФ получили долгожданное жильё. К сожалению, это была последняя стройка, когда жилье - давали… | Во-первых, удалось сдать 9-этажный жилой дом, в котором многие из сотрудников НИИ ЯФ получили долгожданное жильё. К сожалению, это была последняя стройка, когда жилье - давали… | ||
Строка 331: | Строка 335: | ||
Институт практически не потерял свой интеллектуальный потенциал: удалось сохранить на уровне 90 процентов научного персонала. [17] | Институт практически не потерял свой интеллектуальный потенциал: удалось сохранить на уровне 90 процентов научного персонала. [17] | ||
'''Рябчиков Александр Ильич''' (директор НИИ ЯФ в 1997- | '''Рябчиков Александр Ильич''' (директор НИИ ЯФ в 1997 - 2008 гг.) – доктор физико-математических наук, профессор. | ||
Основное научное направление – физика пучков заряженных частиц, ускорительная техника, ионная имплантация, новые методы плазменного осаждения покрытий. Создано новое научное направление, основанное на новых методах получения сильноточных импульсно-периодических пучков ускоренных ионов и плазменных потоков с использованием вакуумной дуги и нетрадиционных методов ионно-лучевой, ионно-плазменной обработки материалов. По результатам научных исследований опубликовано более 150 научных работ в уетральной печати, из них более 30 работ – в зарубежных изданиях. [18] | Основное научное направление – физика пучков заряженных частиц, ускорительная техника, ионная имплантация, новые методы плазменного осаждения покрытий. Создано новое научное направление, основанное на новых методах получения сильноточных импульсно-периодических пучков ускоренных ионов и плазменных потоков с использованием вакуумной дуги и нетрадиционных методов ионно-лучевой, ионно-плазменной обработки материалов. По результатам научных исследований опубликовано более 150 научных работ в уетральной печати, из них более 30 работ – в зарубежных изданиях. [18] | ||
'''Кривобоков Валерий Павлович''' (директор НИИ ЯФ с января | '''Кривобоков Валерий Павлович''' (директор НИИ ЯФ с января 1910 г.) – доктор физико-математических наук, профессор. | ||
Большое внимание уделяет созданию новых промышленных технологий модификации поверхности твердых тел с помощью плазмы магнетронного разряда. Под его руководством разработан ряд лабораторных и промышленных установок, которые получили международное признание благодаря их высокой эффективности и надежности. За последние 10 лет более двадцати аппаратов этого типа были изготовлены и внедрены на промышленных предприятиях России, Чехии, Японии, Южной Кореи, Швейцарии и других стран. Лаборатория, руководимая Кривобоковым В.П., входит в категорию лидирующих в России в этой области. | Большое внимание уделяет созданию новых промышленных технологий модификации поверхности твердых тел с помощью плазмы магнетронного разряда. Под его руководством разработан ряд лабораторных и промышленных установок, которые получили международное признание благодаря их высокой эффективности и надежности. За последние 10 лет более двадцати аппаратов этого типа были изготовлены и внедрены на промышленных предприятиях России, Чехии, Японии, Южной Кореи, Швейцарии и других стран. Лаборатория, руководимая Кривобоковым В.П., входит в категорию лидирующих в России в этой области. |