133 804
правки
Pvp (обсуждение | вклад) Нет описания правки |
Pvp (обсуждение | вклад) Нет описания правки |
||
Строка 24: | Строка 24: | ||
В 1958 г. окончил [[Физико-технический факультет ТПУ|физико-технический факультет]] [[ТПУ|Томского политехнического института]] по физико-технической специальности с присвоением квалификации инженера-физика. | В 1958 г. окончил [[Физико-технический факультет ТПУ|физико-технический факультет]] [[ТПУ|Томского политехнического института]] по физико-технической специальности с присвоением квалификации инженера-физика. | ||
В 1959 - 1961 гг. обучался в аспирантуре ТПИ (научные руководители профессора [[Ананьев Лев Мартемьянович|Л. М. Ананьев]] и [[Воробьев Александр Акимович|А. А. Воробьев]]). Кандидатскую диссертацию на тему «Некоторые вопросы разработки и исследования малогабаритных бетатронов» защитил в 1964 г. в Совете ТПИ. После окончания аспирантуры – старший преподаватель, доцент, и.о. заведующий кафедрой промышленной электроники. В 1969 г. переведен в [[НИИ ядерной физики при ТПУ|НИИ ЯФ]] руководителем сектора малогабаритных бетатронов, а в 1972 г. назначен руководителем лаборатории ускорительной техники. В 1979 г. переведен на должность заместителя директора по научной работе [[НИИ интроскопии при ТПУ|НИИ интроскопии]] ТПИ, через год назначен директором этого института. | В 1959 - 1961 гг. обучался в аспирантуре [[ТПУ|ТПИ]] (научные руководители профессора [[Ананьев Лев Мартемьянович|Л. М. Ананьев]] и [[Воробьев Александр Акимович|А. А. Воробьев]]). Кандидатскую диссертацию на тему «Некоторые вопросы разработки и исследования малогабаритных бетатронов» защитил в 1964 г. в Совете [[ТПУ|ТПИ]]. После окончания аспирантуры – старший преподаватель, доцент, и.о. заведующий кафедрой промышленной электроники. В 1969 г. переведен в [[НИИ ядерной физики при ТПУ|НИИ ЯФ]] руководителем сектора малогабаритных бетатронов, а в 1972 г. назначен руководителем лаборатории ускорительной техники. В 1979 г. переведен на должность заместителя директора по научной работе [[НИИ интроскопии при ТПУ|НИИ интроскопии]] [[ТПУ|ТПИ]], через год назначен директором этого института. | ||
В 1980 - 2008 гг. - директор [[НИИ интроскопии при ТПУ|НИИ интроскопии]] при ТПУ. | В 1980 - 2008 гг. - директор [[НИИ интроскопии при ТПУ|НИИ интроскопии]] при ТПУ. | ||
Строка 48: | Строка 48: | ||
[[Файл:Betatron.jpg|250px|right|thumb|Бетатроны типа МИБ]] | [[Файл:Betatron.jpg|250px|right|thumb|Бетатроны типа МИБ]] | ||
[[Физика пучков заряженных частиц и ускорительная техника|Бетатрон]] конструктивно представляет собой большой электромагнит, между полюсами которого расположена тороидальная вакуумная камера. Электромагнит создаёт в зазоре между полюсами переменное (меняющееся со временем по закону синуса, обычно с промышленной частотой 50 Гц) магнитное поле напряженностью, которое в плоскости вакуумной камеры создаёт вихревое электрическое поле (э.д.с. индукции). В вакуумную камеру с помощью инжектора (электронная пушка) в начале каждого периода нарастания магнитного поля (т.е. с частотой 50 Гц) впрыскиваются электроны, которые увлекаются вихревым электрическим полем в процесс ускорения по круговой орбите. В момент, когда магнитное поле достигает максимального значения (в конце первой четверти каждого периода), процесс ускорения электронов прекращается и сменяется их замедлением, так как вихревое поле меняет направление, а э.д.с. индукции – знак. Электроны, достигшие наибольшей энергии, смещаются с равновесной орбиты и либо выводятся из камеры, либо направляются на специальную мишень внутри камеры, называемую тормозной. Торможение электронов в этой мишени в кулоновском поле ядер и электронов приводит к возникновению электромагнитного тормозного излучения, максимальная энергия которого равна кинетической энергии Ее электронов в конце ускорения: = Ее. Тормозные фотоны летят в направлении движения первичных электронов в узком конусе. Их энергетический спектр непрерывен, причем, чем меньше энергия фотонов, тем их больше в тормозном излучении. Формирование высокоэнергичного электромагнитного γ-излучения торможением высокоэнергичных электронов в мишени - наиболее простой и эффективный способ создания пучка γ-квантов высокой энергии для экспериментов в области ядерной физики и физики частиц. | [[Физика пучков заряженных частиц и ускорительная техника|Бетатрон]] конструктивно представляет собой большой электромагнит, между полюсами которого расположена тороидальная вакуумная камера. Электромагнит создаёт в зазоре между полюсами переменное (меняющееся со временем по закону синуса, обычно с промышленной частотой 50 Гц) магнитное поле напряженностью, которое в плоскости вакуумной камеры создаёт вихревое электрическое поле (э.д.с. индукции). В вакуумную камеру с помощью инжектора (электронная пушка) в начале каждого периода нарастания магнитного поля (т.е. с частотой 50 Гц) впрыскиваются электроны, которые увлекаются вихревым электрическим полем в процесс ускорения по круговой орбите. В момент, когда магнитное поле достигает максимального значения (в конце первой четверти каждого периода), процесс ускорения электронов прекращается и сменяется их замедлением, так как вихревое поле меняет направление, а э.д.с. индукции – знак. Электроны, достигшие наибольшей энергии, смещаются с равновесной орбиты и либо выводятся из камеры, либо направляются на специальную мишень внутри камеры, называемую тормозной. Торможение электронов в этой мишени в кулоновском поле ядер и электронов приводит к возникновению электромагнитного тормозного излучения, максимальная энергия которого равна кинетической энергии Ее электронов в конце ускорения: = Ее. Тормозные фотоны летят в направлении движения первичных электронов в узком конусе. Их энергетический спектр непрерывен, причем, чем меньше энергия фотонов, тем их больше в тормозном излучении. Формирование высокоэнергичного электромагнитного γ-излучения торможением высокоэнергичных электронов в мишени - наиболее простой и эффективный способ создания пучка γ-квантов высокой энергии для экспериментов в области ядерной физики и физики частиц. | ||
Бетатроны преимущественно и используются как источники тормозного излучения. Благодаря простоте конструкции и управления, а также дешевизне бетатроны получили широкое применение в прикладных целях в диапазоне энергий 20-50 МэВ. Создание бетатронов на более высокие энергии сопряжено с необходимостью использования электромагнитов слишком большого размера и веса (магнитное поле приходится создавать не только на орбите, но и внутри неё). | Бетатроны преимущественно и используются как источники тормозного излучения. Благодаря простоте конструкции и управления, а также дешевизне бетатроны получили широкое применение в прикладных целях в диапазоне энергий 20-50 МэВ. Создание бетатронов на более высокие энергии сопряжено с необходимостью использования электромагнитов слишком большого размера и веса (магнитное поле приходится создавать не только на орбите, но и внутри неё). | ||