133 831
правка
Pvp (обсуждение | вклад) Нет описания правки |
Pvp (обсуждение | вклад) Нет описания правки |
||
Строка 3: | Строка 3: | ||
|Оригинал имени = | |Оригинал имени = | ||
|Фото = Ivanchinae.d.jpg | |Фото = Ivanchinae.d.jpg | ||
|Ширина = | |Ширина = 150px | ||
|Подпись = | |Подпись = | ||
|Дата рождения = | |Дата рождения = | ||
Строка 19: | Строка 19: | ||
|Награды и премии = | |Награды и премии = | ||
}} | }} | ||
'''Иванчина Эмилия Дмитриевна''' – доктор технических наук, профессор | '''Иванчина Эмилия Дмитриевна''' – доктор технических наук, профессор Отделения химической инженерии Школы базовой инженерной подготовки [[ТПУ|Томского политехнического университета]]. | ||
==Биография== | ==Биография== | ||
Строка 35: | Строка 35: | ||
В 2002 г. защитила докторскую диссертацию на тему «Совершенствование промышленной технологии переработки углеводородного сырья с использованием платиновых катализаторов на основе нестационарной модели» по специальности 05.17.08 «Процессы и аппараты химических технологий». Ученое звание профессора присвоено в 2004 г. | В 2002 г. защитила докторскую диссертацию на тему «Совершенствование промышленной технологии переработки углеводородного сырья с использованием платиновых катализаторов на основе нестационарной модели» по специальности 05.17.08 «Процессы и аппараты химических технологий». Ученое звание профессора присвоено в 2004 г. | ||
Работала профессором кафедры химической технологии топлива и химической кибернетики Института природных ресурсов ТПУ, в настоящее время - профессор Отделения химической инженерии. | |||
==Научная деятельность== | ==Научная деятельность== | ||
Строка 58: | Строка 58: | ||
Основные научные результаты: | Основные научные результаты: | ||
- работа катализатора на оптимальной активности значительно увеличивает его ресурс. Реализация потенциала катализаторов в промышленных условий зависит как от гидродинамических режимов в реакторе, так и от технологических условий. Наибольшая селективность процесса соответствует максимальному выходу товарной продукции при неизменном уровне издержек производства за счет максимально возможного приближения к равновесной степени превращения промежуточных продуктов уплотнения (полукокс) в жидкие углеводороды. Результаты внедрения этой технологии обеспечили высокий экономический эффект; | |||
- разработаны теоретические основы ресурсосберегающей и безопасной технологии эксплуатации гетерогенных и жидкофазных катализаторов в замкнутом контуре: рабочий цикл – регенерация – рабочий цикл. Опубликовано 52 статьи (в журналах: «Chemical Engineering Journal», «Известия высших учебных заведений. Физика», «Известия Томского политехнического университета» и других). Зарегистрировано более 30 результатов интеллектуальной деятельности ). Защищено 15 кандидатских диссертации, а также в 2012 году докторская диссертация – Е.Н. Ивашкина (научный консультант Э.Д. Иванчина). За фундаментальные исследования в рамках этого направления получен Грант Президента Российской Федерации для государственной поддержки ведущих научных школ Российской Федерации; | |||
- разработаны физико-химические прогностические математические модели процессов эксплуатации и регенерации гетерогенных и жидкофазных катализаторов для переработки бензиновой и дизельной фракций нефти. Опубликовано более 30 статей в ведущих профильных российских и зарубежных журналах. Модели и прогностический аппарат зарегистрированы в виде результатов интеллектуальной деятельности; | |||
- сформулированы математические модели и разработаны методы решения задач сопряженных процессов эксплуатации и регенерации гетерогенных и жидкофазных катализаторов в нестационарных условиях. Опубликованы в статьях, представленных в п. 2.9, а также в таких изданиях как «Нефтепереработка и нефтехимия», «Катализ в промышленности», «Мир нефтепродуктов», «Нефтехимия»; | |||
- установлены закономерности протекания процесса риформинга в оптимальной области, соответствующей термодинамическому равновесию реакционной системы, когда наблюдается равенство скоростей образования и гидрирования промежуточных продуктов уплотнения, так как при этом длительность сырьевого цикла может быть увеличена на 20–30 %. При этом учтенная степень использования неподвижного зернистого слоя катализатора в реакторе и протекающих реакций коксообразования при моделировании нестационарного процесса риформинга бензинов дает возможность осуществлять подбор катализаторов для промышленных реакторов с радиальным вводом сырья с целью повышения эффективности их работы и выбрать оптимальную конструкцию реакторного узла учетом влияния структуры потока на предложенный критерий эффективности (Диссертационная работа Шаровой Е.С., публикации в журналах «Катализ в промышленности», «Нефтепереработка и Нефтехимия»); | |||
- разработан способ повышения эффективности нефтехимического процесса с непрерывной регенерацией катализатора, основанный на использовании нестационарной модели, учитывающей образование кокса, величину кратности циркуляции по контуру реактор – регенератор, который является новым и позволил осуществить промышленную реализацию оптимальной конструкции и режимов работы реакторов со стационарным и движущимся слоем катализатора (Диссертационные работы Абрамина А.Л., Гынгазовой М.С., статьи в журналах «Chemical Engineering Journal», «Catalysis in Industry», «Нефтепереработка и нефтехимия»); | |||
- исследованы механизм и закономерности образования кокса по результатам экспериментальных исследований образцов промышленных платиновых катализаторов для процессов риформинга, изомеризации, дегидрирования. В условиях этих процессов образуется аморфный кокс (температура выгорания 450-550 °С). Содержание кокса на катализаторе составляет 4-16% в зависимости от состава сырья и условий процессов. Удельная поверхность катализатора существенно снижается в результате проведения большого числа регенераций. Прогнозными расчетами на математической модели показано и экспериментально подтверждено, что при подаче воды увеличивающимися порциями возрастает срок службы катализатора в среднем на 15 %, а темп подъема температуры на 2 °С ниже, что указывает на ослабление процессов дезактивации за счет более полной конверсии аморфных коксогенных структур. Разработанные и сертифицированные программы расчета технологических показателей промышленных процессов нашли свое применение при расчете оптимальных режимов работы промышленных установки и в учебном процессе (Диссертации Франциной Е.В., Романовского Р.В., Долганова И.М.), статьи в журналах, индексируемых в международных базах “Chemical Engineering Journal”, “Catalysis in Industry”). | |||
Выполненные исследования позволили установить, что при существующих технологиях рукавной и пневмозагрузки катализатора в промышленные реакторы процесса каталитического риформинга бензинов и изомеризации большой единичной мощности (~1млн.т/год) гидродинамическая неравномерность подачи сырья по сечению аппарата может достигать от 5 до 15 %, что объективно приводит к возникновению локальных перегревов и образованию избытка кокса на поверхности Pt-контакта и к быстрому падению его активности и ужесточению процесса регенерации. Многофакторная задачи оптимизации режимных параметров эксплуатации процесса с гидродинамической неравномерностью структуры потока в реакторе возможна только с применением метода математического моделирования на основе учёта реакционной способности углеводородов и активности катализатора. | Выполненные исследования позволили установить, что при существующих технологиях рукавной и пневмозагрузки катализатора в промышленные реакторы процесса каталитического риформинга бензинов и изомеризации большой единичной мощности (~1млн.т/год) гидродинамическая неравномерность подачи сырья по сечению аппарата может достигать от 5 до 15 %, что объективно приводит к возникновению локальных перегревов и образованию избытка кокса на поверхности Pt-контакта и к быстрому падению его активности и ужесточению процесса регенерации. Многофакторная задачи оптимизации режимных параметров эксплуатации процесса с гидродинамической неравномерностью структуры потока в реакторе возможна только с применением метода математического моделирования на основе учёта реакционной способности углеводородов и активности катализатора. | ||
Строка 79: | Строка 79: | ||
Автор учебно-методического обеспечения указанных дисциплин (в т.ч. и методического обеспечения курсового проектирования), является автором 10 учебных пособий по указанным дисциплинам. Автор более 20 научно-методических публикаций. Лауреат многих конкурсов НИР и НИРС. | Автор учебно-методического обеспечения указанных дисциплин (в т.ч. и методического обеспечения курсового проектирования), является автором 10 учебных пособий по указанным дисциплинам. Автор более 20 научно-методических публикаций. Лауреат многих конкурсов НИР и НИРС. | ||
==Награды== | ==Награды== | ||
Строка 134: | Строка 120: | ||
* Победитель конкурса 2014 года на право получения грантов Президента Российской Федерации по государственной поддержке ведущих научных школ в области знания «Технические и инженерные науки», 2014 г. | * Победитель конкурса 2014 года на право получения грантов Президента Российской Федерации по государственной поддержке ведущих научных школ в области знания «Технические и инженерные науки», 2014 г. | ||
==Ссылки== | ==Ссылки== | ||
http://portal.tpu.ru/SHARED/i/IED | |||
[[Категория:Профессора ТПУ]] | [[Категория:Профессора ТПУ]] | ||
[[Категория:Преподаватели]] | [[Категория:Преподаватели]] | ||
[[Категория:Галерея почета - 2012]] | [[Категория:Галерея почета - 2012]] |