133 804
правки
Pvp (обсуждение | вклад) Нет описания правки |
Pvp (обсуждение | вклад) Нет описания правки |
||
Строка 9: | Строка 9: | ||
==Предпосылки== | ==Предпосылки== | ||
Разработка проблем теории и практики ускорения заряженных частиц в Томском политехническом институте была начата в | Разработка проблем теории и практики ускорения заряженных частиц в Томском политехническом институте была начата в 1946 г. по инициативе ректора института профессора А.А. Воробьева. В те годы все работы, касавшиеся учкорителей, как в СССР, так и в других странах, были строго засекречены и взаимный обмен научной ирнформацией между чеными практически исключался. Поэтому созданный в ТПИ небольшой коллектив ученых и инженеров был поставлен перед необходимостью начинать исследованиря с нуля – изучения основ теории индукционного ускорения электронов, проектирование отдельных узлов ускорителя и установки в целом, разработка технологии производства, а затем – изготовление, монтаж, накладка и запуск готового ускорителя. | ||
==Бетатроны== | ==Бетатроны== | ||
Строка 17: | Строка 17: | ||
Последующий ход событий показпал, что выбранное научное направление являетсячрезвычайно плодотворным, и принятые методы решения научных и практических проблем вполне себя оправдали. Бетатронной тематикой были впоследствии заняты сотни научных сотрудников, инженеров и студентов института, организованы многие научные лаборатории и опытные производства, открыта подготовка инженерных кадров по ряду новых специальностей (ускорители заряженных частиц; дозиметрия ионизирующих излучений; неразрушающие методы контроля и др.). В результате изготовлены и посталены заказчикам многие десятки бетатронов. Бетатроны ТПИ работают во многих странах мира (Китай, Индия, Англия, Франция, Финляндия, Германия, Италия, Польша, Чехия и др.). | Последующий ход событий показпал, что выбранное научное направление являетсячрезвычайно плодотворным, и принятые методы решения научных и практических проблем вполне себя оправдали. Бетатронной тематикой были впоследствии заняты сотни научных сотрудников, инженеров и студентов института, организованы многие научные лаборатории и опытные производства, открыта подготовка инженерных кадров по ряду новых специальностей (ускорители заряженных частиц; дозиметрия ионизирующих излучений; неразрушающие методы контроля и др.). В результате изготовлены и посталены заказчикам многие десятки бетатронов. Бетатроны ТПИ работают во многих странах мира (Китай, Индия, Англия, Франция, Финляндия, Германия, Италия, Польша, Чехия и др.). | ||
Созданные оригинальные конструкции бетатронов предназначены для исследования и обеспечения технологических процессов контроля материалов и изделий, радиоактивного анализа и применении в медицине и биологии, а в последующем для постановки тонких экспериментов по исследованию характеристического и переходного излучений, возникающих при взаимодействии ускоренных электронова со средой. | Созданные оригинальные конструкции бетатронов предназначены для исследования и обеспечения технологических процессов контроля материалов и изделий, радиоактивного анализа и применении в медицине и биологии, а в последующем для постановки тонких экспериментов по исследованию характеристического и переходного излучений, возникающих при взаимодействии ускоренных электронова со средой. | ||
Сама идея создать такой ускоритель зародилась в 20-е – 30-е гг., в том числе у немецкого физика Штейнбека и швейцарца Р. Видерое. Военные события конца 30-х годов не позволили реализовать эти идеи в Европе. Первый бетатрон был запущен в 1941г. в Иллинойском технологическом университете США группой физиков под руководством профессора Д. Керста, в 1946г. – в Швейцарии под руководством профессора Р. Видерое, в 1947г. – в Томске. Бетатроны изготавливались и в других странах, и в других институтах СССР. Но только в Томске эта проблема была решена как создание нескольких классов установок общего и специального назначения. | Сама идея создать такой ускоритель зародилась в 20-е – 30-е гг., в том числе у немецкого физика Штейнбека и швейцарца Р. Видерое. Военные события конца 30-х годов не позволили реализовать эти идеи в Европе. Первый бетатрон был запущен в 1941г. в Иллинойском технологическом университете США группой физиков под руководством профессора Д. Керста, в 1946г. – в Швейцарии под руководством профессора Р. Видерое, в 1947г. – в Томске. Бетатроны изготавливались и в других странах, и в других институтах СССР. Но только в Томске эта проблема была решена как создание нескольких классов установок общего и специального назначения. | ||
Строка 25: | Строка 25: | ||
Однажды, в конце дня, профессор Эккард пригласил А.А. Воробьева к себе в кабинет для обсуждения достиженийи перспектив дальнейшего развития бетатроностроения. В кабинете, кроме профессора Эккарда, были профессора Штейнбек и Р. Видерое, основатель и президент фирмы «Гамма-Мат» профессор Зауервейн. У собеседников было очень много вопросов о достижениях томской школы бетатроностроения. При этом неоднократно говорилось, что создание трех классов установок, т.е. промышленного назначения на энергии 15-35 Мэв, специального назначения – сильноточных и стереобетатронов, а также малогабаритных, является не только достижением мирового уровня, но и свидетельствует о создании в Томском политехническом институте коллектива специалистов. Подчеркивался высокий уровень научного руководства работами и прогнозированием направления развития проблемы. В итоге профессора Штейнбек, Р. Видерое и Зуервейн выразили желание приехать в Томск для озакомления с достижениями в бетатроностроении. В последующем стараниями профессоров Л.М. Ананьева и В.Л. Чахлова удалось создать соваместное производство малогабаритных бетатронов с английской фирмой и выйти, таким образом, на мировой уровень развития и производства бетатронов. | Однажды, в конце дня, профессор Эккард пригласил А.А. Воробьева к себе в кабинет для обсуждения достиженийи перспектив дальнейшего развития бетатроностроения. В кабинете, кроме профессора Эккарда, были профессора Штейнбек и Р. Видерое, основатель и президент фирмы «Гамма-Мат» профессор Зауервейн. У собеседников было очень много вопросов о достижениях томской школы бетатроностроения. При этом неоднократно говорилось, что создание трех классов установок, т.е. промышленного назначения на энергии 15-35 Мэв, специального назначения – сильноточных и стереобетатронов, а также малогабаритных, является не только достижением мирового уровня, но и свидетельствует о создании в Томском политехническом институте коллектива специалистов. Подчеркивался высокий уровень научного руководства работами и прогнозированием направления развития проблемы. В итоге профессора Штейнбек, Р. Видерое и Зуервейн выразили желание приехать в Томск для озакомления с достижениями в бетатроностроении. В последующем стараниями профессоров Л.М. Ананьева и В.Л. Чахлова удалось создать соваместное производство малогабаритных бетатронов с английской фирмой и выйти, таким образом, на мировой уровень развития и производства бетатронов. | ||
В начале 1940-х гг. А.А. Воробьев сделал попытки начать работу в данном направлении, однако в то время не было ни технической готовности, ни специалистов. Работы по этой проблеме по инициативе А.А. Воробьева были продолжены в 1945г. группоспециалистов в составе доцентов Б.Н. Родимова, А.К. Потужного, В.Н. Титова, М.Ф. Филиппова и еще нескольких человек. Наибольшего успеха в этом деле добилось второе поколение ученых. Это профессор В.И. Горбунов, специализировавшийся со своим коллективом по установкам широкого назначения, профессора Л.М. Ананьев и В.Л. Чахлов, возглавившие разработку малогабаритных бетатронов и профессор В.А. Москалев, создавший уникальные сильноточные бетатроны и стереобетатроны. Научное руководство общей проблемой возглавлял А.А. Воробьев. | В начале 1940-х гг. А.А. Воробьев сделал попытки начать работу в данном направлении, однако в то время не было ни технической готовности, ни специалистов. Работы по этой проблеме по инициативе А.А. Воробьева были продолжены в 1945г. группоспециалистов в составе доцентов Б.Н. Родимова, А.К. Потужного, В.Н. Титова, М.Ф. Филиппова и еще нескольких человек. Наибольшего успеха в этом деле добилось второе поколение ученых. Это профессор В.И. Горбунов, специализировавшийся со своим коллективом по установкам широкого назначения, профессора Л.М. Ананьев и В.Л. Чахлов, возглавившие разработку малогабаритных бетатронов и профессор В.А. Москалев, создавший уникальные сильноточные бетатроны и стереобетатроны. Научное руководство общей проблемой возглавлял А.А. Воробьев. | ||
Бетатрон – циклический индукционный ускоритель, в котором для ускорения электронов используется вихревое электрическое поле, создаваемое переменным магнитным потоком, одновременно управляющим движением электронов по заданной траектории. | Бетатрон – циклический индукционный ускоритель, в котором для ускорения электронов используется вихревое электрическое поле, создаваемое переменным магнитным потоком, одновременно управляющим движением электронов по заданной траектории. | ||
Строка 63: | Строка 63: | ||
Для большей гарантии того, что создаваемый синхротрон «Сириус» оправдает возлагаемые на него надежды, было принято решение создать модельный синхротрон на энергию 300 МэВ (установка «РФ-Томск»). Изготовление отдельных элементов модельного синхротрона производилась в экспериментальных мастерских, а его монтаж и настройка - в помещении нового 11-го корпуса. 12 апреля 1961 года состоялся успешный пуск модельного синхротрона. | Для большей гарантии того, что создаваемый синхротрон «Сириус» оправдает возлагаемые на него надежды, было принято решение создать модельный синхротрон на энергию 300 МэВ (установка «РФ-Томск»). Изготовление отдельных элементов модельного синхротрона производилась в экспериментальных мастерских, а его монтаж и настройка - в помещении нового 11-го корпуса. 12 апреля 1961 года состоялся успешный пуск модельного синхротрона. | ||
28 января 1965 года был осуществлен физический пуск синхротрона «Сириус» на 1,5 ГэВ. | 28 января 1965 года был осуществлен физический пуск синхротрона «Сириус» на 1,5 ГэВ. | ||
Синхротрон имеет два канала для получения тормозного и рентгеновского излучений, два канала синхротронного излучения, автоматизированную систему исследований. | Синхротрон имеет два канала для получения тормозного и рентгеновского излучений, два канала синхротронного излучения, автоматизированную систему исследований. | ||
Первые эксперименты на синхротроне начались с изучения динамики ускоряемых частиц. Были проведены исследования влияния квантового характера синхротронного излучения на динамику электронов в синхротроне. В первом эксперименте, проведенном в1968-1969 годах уже на пучке γ-квантов, было измерено время жизни π°-мезона с лучшей в мире точностью. Теоретические исследования были связаны с изучением свойств гиперядер, рассеянием, фото- и электророждением мезонов на нуклонах и ядрах. | Первые эксперименты на синхротроне начались с изучения динамики ускоряемых частиц. Были проведены исследования влияния квантового характера синхротронного излучения на динамику электронов в синхротроне. В первом эксперименте, проведенном в1968-1969 годах уже на пучке γ-квантов, было измерено время жизни π°-мезона с лучшей в мире точностью. Теоретические исследования были связаны с изучением свойств гиперядер, рассеянием, фото- и электророждением мезонов на нуклонах и ядрах. | ||
В 70-х годах уже прошлого века в теоретических и экспериментальных исследованиях на «Сириусе» сложилось в лаборатории два основных научных направления, в которых сотрудниками лаборатории получены приоритетные результаты. | В 70-х годах уже прошлого века в теоретических и экспериментальных исследованиях на «Сириусе» сложилось в лаборатории два основных научных направления, в которых сотрудниками лаборатории получены приоритетные результаты. | ||
В 80-е и 90-е годы был модернизирован синхротрон, получены интенсивные поляризованные пучки фотонов высокой энергии, созданы многоцелевые детектирующие системы на основе широкоапертурных детекторов, создана локальная вычислительная сеть. На новых экспериментальных установках были получены важные и приоритетные физические результаты по околопороговому образованию нейтральных мезонов на легких ядрах, эксклюзивному фотообразованию пионов на ядрах углерода и по парциальным реакциям фотообразования нейтральных пионов на легчайших ядрах, фотодезинтеграции дейтерия линейно поляризованными фотонами. | В 80-е и 90-е годы был модернизирован синхротрон, получены интенсивные поляризованные пучки фотонов высокой энергии, созданы многоцелевые детектирующие системы на основе широкоапертурных детекторов, создана локальная вычислительная сеть. На новых экспериментальных установках были получены важные и приоритетные физические результаты по околопороговому образованию нейтральных мезонов на легких ядрах, эксклюзивному фотообразованию пионов на ядрах углерода и по парциальным реакциям фотообразования нейтральных пионов на легчайших ядрах, фотодезинтеграции дейтерия линейно поляризованными фотонами. | ||
Строка 89: | Строка 89: | ||
В течение более 40 лет на синхротроне "Сириус" выработано на эксперимент около 100 тысяч часов пучкового времени. По результатам создания ускорителя, экспериментальным и теоретическим исследованиям проведено 9 всесоюзных конференций по электронным ускорителям, всесоюзная школа молодых ученых, заседание Совета АН по Э/М взаимодействиям, 8 международных симпозиумов "Излучение релятивистских электронов в периодических структурах" (RREPS), защищено более 20 докторских и около 100 кандидатских диссертаций. | В течение более 40 лет на синхротроне "Сириус" выработано на эксперимент около 100 тысяч часов пучкового времени. По результатам создания ускорителя, экспериментальным и теоретическим исследованиям проведено 9 всесоюзных конференций по электронным ускорителям, всесоюзная школа молодых ученых, заседание Совета АН по Э/М взаимодействиям, 8 международных симпозиумов "Излучение релятивистских электронов в периодических структурах" (RREPS), защищено более 20 докторских и около 100 кандидатских диссертаций. | ||
С 2000 г. на пучках синхротрона и микротрона–инжектора синхротрона «Сириус» были начаты исследования дифракционного излучения релятивистских частиц и излучения Смита-Парселла в оптическом и миллиметровом диапазонах длин волн, что положило начало новому направлению исследований – невозмущающей диагностики пучков. | С 2000 г. на пучках синхротрона и микротрона–инжектора синхротрона «Сириус» были начаты исследования дифракционного излучения релятивистских частиц и излучения Смита-Парселла в оптическом и миллиметровом диапазонах длин волн, что положило начало новому направлению исследований – невозмущающей диагностики пучков. | ||
Параллельно с разработкой и сооружением ускорителей собственными силами, в ТПУ монтировалисьт ускорители, изготовленные и поставляемые в ТПИ другими научными учреждениями СССР. Так институтом электрофизической аппаратуры им. Д.В. Ефремова (Ленинград) были посмтавлены циклотрон и электростатический генератор ЭСГ-2,5. Циклотронная лаборатория была создана в ТПИ в 1957г. Циклотрон с диаметром полюсов 120 см. может ускорять протоны до 33 Мэв. Позже циклотрон был модернизирован, что позволило ускорять на нем, кроме протонов, также дейтроны, ядра гелия, ионы тяжелых газов – углерода, азота, кислорода. Наряду с физическими исследованиями, получением коротеорежущих радионуклидов, на базе циклотрона создан (совместно с НИИ онкологии) медико-биологический комплекс для нейтронной терапии злокачественных опухолей. | Параллельно с разработкой и сооружением ускорителей собственными силами, в ТПУ монтировалисьт ускорители, изготовленные и поставляемые в ТПИ другими научными учреждениями СССР. Так институтом электрофизической аппаратуры им. Д.В. Ефремова (Ленинград) были посмтавлены циклотрон и электростатический генератор ЭСГ-2,5. Циклотронная лаборатория была создана в ТПИ в 1957г. Циклотрон с диаметром полюсов 120 см. может ускорять протоны до 33 Мэв. Позже циклотрон был модернизирован, что позволило ускорять на нем, кроме протонов, также дейтроны, ядра гелия, ионы тяжелых газов – углерода, азота, кислорода. Наряду с физическими исследованиями, получением коротеорежущих радионуклидов, на базе циклотрона создан (совместно с НИИ онкологии) медико-биологический комплекс для нейтронной терапии злокачественных опухолей. | ||
Строка 111: | Строка 111: | ||
Ионные пучки находят широкое применение в исследованиях по модификации поверхности материалов и реализации технологических режимов –высококонцентрированной имплантации и плазменного осаждения покрытий и динамических режимов ионного перемешивания. | Ионные пучки находят широкое применение в исследованиях по модификации поверхности материалов и реализации технологических режимов –высококонцентрированной имплантации и плазменного осаждения покрытий и динамических режимов ионного перемешивания. | ||
Решающий вклад в развитие ускорительной тематики в ТПУ, выполнявшийся под общим руководством А.А. Воробьева, внесли коллективы, руководимые профессорами И.П. Чучалиным, А.Н. Диденко, В.А. Москалевым, Л.И. Ананьевым, В.И. Горбуновым, Ю.П. Усовым, Г.Е. Ремневым, А.И. Рябчиковым, В.А. Чахловым и др. | Решающий вклад в развитие ускорительной тематики в ТПУ, выполнявшийся под общим руководством А.А. Воробьева, внесли коллективы, руководимые профессорами [[Чучалин Иван Петрович|И.П. Чучалиным]], [[Диденко Андрейй Николаевич|А.Н. Диденко]], [[Москалев Владилен Александрович|В.А. Москалевым]], Л.И. Ананьевым, [[Горбунов Владимир Иванович|В.И. Горбуновым]], [[Усов Юрий Петрович|Ю.П. Усовым]], [[Ремнев Геннадий Евгеньевич|Г.Е. Ремневым]], [[Рябчиков Александр Ильич|А.И. Рябчиковым]], [[Чахлов Владимир Лукьянович|В.А. Чахловым]] и др. | ||
==Источники== | ==Источники== |