Буркатовская Юлия Борисовна: различия между версиями

Материал из Электронная энциклопедия ТПУ
Перейти к навигации Перейти к поиску
Нет описания правки
Нет описания правки
Строка 23: Строка 23:
  |Награды и премии    =  
  |Награды и премии    =  
}}
}}
'''Буркатовская Юлия Борисовна''' – кандидат физико-математических наук, доцент кафедры вычислительной техники [[Институт кибернетики | Института кибернетики]] [[ТПУ|Томского политехнического университета]].
'''Буркатовская Юлия Борисовна''' – кандидат физико-математических наук, доцент Отделения информационных технологий [[Инженерная школа информационных технологий и робототехники|Инженерной школы информационных технологий и робототехники]] [[ТПУ|Томского политехнического университета]].


==Биография==
==Биография==


В 1995 г. окончила факультет прикладной математики и кибернетики Томского государственного университета.
Окончила Томский государственный университет в 1995 г.
 
В 1995 - 1998 гг. - аспирантка ТГУ.
   
   
В 1995 - 1998 гг. - аспирантка ТГУ.  
С 1998 г. - программист кафедры прикладной математики и кибернетики ТГУ.
В 2002 - 2017 гг.  - доцент кафедры вычислительной техники института кибернетики ТПУ.
В 2017 - 2018 гг. - доцент кафедры информационных систем и технологий ТПУ.
 
С 2018 г. - доцент Отделения информационных технологий.
 
==Научная деятельность==
 
Научное направление - обнаружение моментов изменения свойств случайных процессов.


С 1998 г. - программист кафедры прикладной математики и кибернетики ФПМК ТГУ.  
Под воздействием внешних факторов параметры случайного процесса могут скачкообразно изменяться в заранее неизвестный момент времени (в частности, резкие скачки курсов акций, изменение интернет-трафика под воздействием хакерских атак, и т.д.). Обнаружение момента изменения параметров, или обнаружение разладки, является одной из классических задач, возникающих при анализе временных рядов. В практических приложениях разладка может означать смену режима системы, выход из стационарного режима, сбой в работе системы. Скорейшее обнаружение момента разладки является важным для поддержки решений, связанных с наблюдаемой системой, например, для корректировки управления, устранения неисправности и т.д. Наиболее сложной и приближенной к реальности является ситуация, в которой параметры процесса до и после разладки неизвестны, так же как и распределение шумов.  


С 2002 г. - доцент кафедры вычислительной техники Института кибернетики ТПУ.
За последние годы в соавторстве с Воробейчиковым С.Э. и Сергеевой Е.Е. были получены результаты, связанные с гарантированным обнаружением разладок и оцениванием параметров авторегрессионных процессов с условной неоднородностью (ARCH, AR/ARCH, GARCH, TAR/ARCH процессы), применяющихся для описания процессов, для которых характерны кластерность и выбросы (например, финансовых данных). Рассматриваемые модели сложны для анализа, поскольку являются процессами с неизвестной и в общем случае неограниченной дисперсией шумов, зависящей от предыдущих наблюдений. Как правило, их исследование проводится в асимптотической постановке либо с помощью численного моделирования. В наших работах предложены модификации метода наименьших квадратов, позволяющие ограничить дисперсию оценок и вероятности ошибочных решений для конечного объема выборки, определяемого с помощью специального правила остановки.
Совместно с Воробейчиковым С.Э. и Кабановой Т.В. были разработаны модификации метода кумулятивных сумм для обнаружения многократных разладок. Результаты применены для оценивания состояния управляющей цепи дважды стохастического пуассоновского потока и для обнаружения скачка параметров нефтегазового оборудования.  


Буркатовской Ю.Б. разработан ряд оригинальных программ для имитационного моделирования акустического излучения. Основной задачей является оценка вклада многократного рассеяния акустического излучения в интенсивность прошедшего излучения, поскольку данный вклад невозможно оценить аналитически. Проведены численные эксперименты для различных моделей атмосферы и получены зависимости вклада многократного рассеяния от параметров атмосферы.
==Педагогическая деятельность==
==Педагогическая деятельность==


Преподаваемые курсы:
Преподаваемые курсы:


* Теория графов;
- Теория графов;
 
* Теория автоматов;
 
* Дискретная математика;


* Профессиональная подготовка на английском языке.
- Теория автоматов;


==Публикации==
- Дискретная математика;


1. Буркатовская, Юлия Борисовна. Теория графов : учебное пособие / Ю. Б. Буркатовская; Национальный исследовательский Томский политехнический университет (ТПУ). — Томск: Изд-во ТПУ, 2014.  
- Профессиональная подготовка на английском языке.


2. Буркатовская, Юлия Борисовна. Теория графов [Электронный ресурс] : учебное пособие : в 3 ч. / Ю. Б. Буркатовская; Национальный исследовательский Томский политехнический университет (ТПУ), Институт кибернетики (ИК). — Томск: Изд-во ТПУ, 2014.


==Ссылки==
==Ссылки==

Версия от 05:36, 8 февраля 2019

Буркатовская Юлия Борисовна
56525-1-.jpg
Научная сфера:

физика

Место работы:

ТПУ

Учёная степень:

кандидат физико-математических наук

Альма-матер:

ТГУ

Буркатовская Юлия Борисовна – кандидат физико-математических наук, доцент Отделения информационных технологий Инженерной школы информационных технологий и робототехники Томского политехнического университета.

Биография

Окончила Томский государственный университет в 1995 г.

В 1995 - 1998 гг. - аспирантка ТГУ.

С 1998 г. - программист кафедры прикладной математики и кибернетики ТГУ.

В 2002 - 2017 гг. - доцент кафедры вычислительной техники института кибернетики ТПУ.

В 2017 - 2018 гг. - доцент кафедры информационных систем и технологий ТПУ.

С 2018 г. - доцент Отделения информационных технологий.

Научная деятельность

Научное направление - обнаружение моментов изменения свойств случайных процессов.

Под воздействием внешних факторов параметры случайного процесса могут скачкообразно изменяться в заранее неизвестный момент времени (в частности, резкие скачки курсов акций, изменение интернет-трафика под воздействием хакерских атак, и т.д.). Обнаружение момента изменения параметров, или обнаружение разладки, является одной из классических задач, возникающих при анализе временных рядов. В практических приложениях разладка может означать смену режима системы, выход из стационарного режима, сбой в работе системы. Скорейшее обнаружение момента разладки является важным для поддержки решений, связанных с наблюдаемой системой, например, для корректировки управления, устранения неисправности и т.д. Наиболее сложной и приближенной к реальности является ситуация, в которой параметры процесса до и после разладки неизвестны, так же как и распределение шумов.

За последние годы в соавторстве с Воробейчиковым С.Э. и Сергеевой Е.Е. были получены результаты, связанные с гарантированным обнаружением разладок и оцениванием параметров авторегрессионных процессов с условной неоднородностью (ARCH, AR/ARCH, GARCH, TAR/ARCH процессы), применяющихся для описания процессов, для которых характерны кластерность и выбросы (например, финансовых данных). Рассматриваемые модели сложны для анализа, поскольку являются процессами с неизвестной и в общем случае неограниченной дисперсией шумов, зависящей от предыдущих наблюдений. Как правило, их исследование проводится в асимптотической постановке либо с помощью численного моделирования. В наших работах предложены модификации метода наименьших квадратов, позволяющие ограничить дисперсию оценок и вероятности ошибочных решений для конечного объема выборки, определяемого с помощью специального правила остановки.

Совместно с Воробейчиковым С.Э. и Кабановой Т.В. были разработаны модификации метода кумулятивных сумм для обнаружения многократных разладок. Результаты применены для оценивания состояния управляющей цепи дважды стохастического пуассоновского потока и для обнаружения скачка параметров нефтегазового оборудования.

Буркатовской Ю.Б. разработан ряд оригинальных программ для имитационного моделирования акустического излучения. Основной задачей является оценка вклада многократного рассеяния акустического излучения в интенсивность прошедшего излучения, поскольку данный вклад невозможно оценить аналитически. Проведены численные эксперименты для различных моделей атмосферы и получены зависимости вклада многократного рассеяния от параметров атмосферы.

Педагогическая деятельность

Преподаваемые курсы:

- Теория графов;

- Теория автоматов;

- Дискретная математика;

- Профессиональная подготовка на английском языке.


Ссылки

http://portal.tpu.ru/SHARED/t/TRACEY/Biography