135 309
правок
Pvp (обсуждение | вклад) Нет описания правки |
Pvp (обсуждение | вклад) Нет описания правки |
||
(не показаны 2 промежуточные версии этого же участника) | |||
Строка 20: | Строка 20: | ||
}} | }} | ||
[[Файл:Niiefa.jpg|220px|right|thumb|Логотип НИИ ЭФА им. Д.В. Ефремова]] | [[Файл:Niiefa.jpg|220px|right|thumb|Логотип НИИ ЭФА им. Д.В. Ефремова]] | ||
[[Файл:Bundesarchiv Bild 183-1985-0211-001, Jena, Sowjetischer Linearbeschleuniger.jpg|220px|right|Медицинский линейный ускоритель, произведённый в НИИЭФА, применяемый для радиотерапии в клинике города Йена, ГДР. 1985 г.]] | [[Файл:Bundesarchiv Bild 183-1985-0211-001, Jena, Sowjetischer Linearbeschleuniger.jpg|220px|right|thumb|Медицинский линейный ускоритель, произведённый в НИИЭФА, применяемый для радиотерапии в клинике города Йена, ГДР. 1985 г.]] | ||
[[Файл:Iskra-5-vid-sverhu.jpg|220px|right|thumb|Лазерная установка "Искра-5" (НИИ ЭФА) - имеет 12 лазерных каналов с общей энергией излучения 30 кДж. Мишень d-t смесь в виде льда при температуре 14К в многослойной оболочке: внутренние слои предохраняют от перегрева, внешние при испарении создают реактивный импульс, сживающий мишень]] | [[Файл:Iskra-5-vid-sverhu.jpg|220px|right|thumb|Лазерная установка "Искра-5" (НИИ ЭФА) - имеет 12 лазерных каналов с общей энергией излучения 30 кДж. Мишень d-t смесь в виде льда при температуре 14К в многослойной оболочке: внутренние слои предохраняют от перегрева, внешние при испарении создают реактивный импульс, сживающий мишень]] | ||
[[Файл:Img6302.jpg|220px|right|thumb|Токамак Т – 15 - тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза]] | [[Файл:Img6302.jpg|220px|right|thumb|Токамак Т – 15 - тороидальная установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза]] | ||
Строка 54: | Строка 54: | ||
Созданный уникальный измерительный комплекс обеспечил выполнение полной программы исследований и контроля на всех этапах сооружения электромагнитной системы и формирование заданных расчетных характеристик. Физический запуск ускорителя был осуществлен в 1967 г. Эта работа легла в основу кандидатской диссертации И.В. Мозина. Его научным руководителем был лауреат Нобелевской премии академик П. Черенков. | Созданный уникальный измерительный комплекс обеспечил выполнение полной программы исследований и контроля на всех этапах сооружения электромагнитной системы и формирование заданных расчетных характеристик. Физический запуск ускорителя был осуществлен в 1967 г. Эта работа легла в основу кандидатской диссертации И.В. Мозина. Его научным руководителем был лауреат Нобелевской премии академик П. Черенков. | ||
Разработанный учеными новый тип магнитомодуляционного датчика для динамических измерений магнитного поля обладал рекордной чувствительностью, что позволило проводить исследования конфигурации поля и его градиента в пакетах блоках электромагнита с погрешностью на порядок ниже. | [[Глухих Василий Андреевич|Разработанный учеными]] новый тип магнитомодуляционного датчика для динамических измерений магнитного поля обладал рекордной чувствительностью, что позволило проводить исследования конфигурации поля и его градиента в пакетах блоках электромагнита с погрешностью на порядок ниже. | ||
Предложенный новый метод с использованием набора датчиков с автоматической статистической обработкой результатов измерений обеспечивал получение с рекордной точностью интегральных по длине блока и пакета характеристик поля в одном цикле магнитного поля, а также их отличия между блоками и пакетами. Это было очень важным как с точки зрения метрологии, так и эффективности массовых магнитных измерений. | Предложенный новый метод с использованием набора датчиков с автоматической статистической обработкой результатов измерений обеспечивал получение с рекордной точностью интегральных по длине блока и пакета характеристик поля в одном цикле магнитного поля, а также их отличия между блоками и пакетами. Это было очень важным как с точки зрения метрологии, так и эффективности массовых магнитных измерений. | ||
Строка 70: | Строка 70: | ||
Во многих физических центрах страны сооружались небольшие по масштабу исследовательские установки для решения отдельных фундаментальных задач термоядерного синтеза. Именно эти малые установки типа токамак, в том числе ТМ-4А, поставленный за рубеж, стали первыми объектами автоматизированного управления. Они содержали те же технологические системы, что и будущие крупные установки, что позволило приобрести неоценимый опыт. | Во многих физических центрах страны сооружались небольшие по масштабу исследовательские установки для решения отдельных фундаментальных задач термоядерного синтеза. Именно эти малые установки типа токамак, в том числе ТМ-4А, поставленный за рубеж, стали первыми объектами автоматизированного управления. Они содержали те же технологические системы, что и будущие крупные установки, что позволило приобрести неоценимый опыт. | ||
Следующим объектом автоматизации был токамак Т-15 - установка, в которой были воплощены последние научные и технические достижения. | Следующим объектом автоматизации был [[Токамак Т-15|токамак Т-15]] - установка, в которой были воплощены последние научные и технические достижения. | ||
Особое место в ряду крупных электрофизических установок, в том числе с точки зрения системы управления, занимает 12-канальный лазер "Искра-5" для исследований в области термоядерного синтеза. Его система питания построена на основе емкостного накопителя энергией 67 МДж. эксперименты с помощью установки "Искра-5" начались в 1990 г. | Особое место в ряду крупных электрофизических установок, в том числе с точки зрения системы управления, занимает 12-канальный лазер "Искра-5" для исследований в области термоядерного синтеза. Его система питания построена на основе емкостного накопителя энергией 67 МДж. эксперименты с помощью установки "Искра-5" начались в 1990 г. |