ИСЭ СО РАН: различия между версиями

Перейти к навигации Перейти к поиску
нет описания правки
Нет описания правки
Нет описания правки
 
(не показано 76 промежуточных версий этого же участника)
Строка 1: Строка 1:
[[Файл:Zdanie.jpg|300px|right|thumb|]]
[[Файл:Beydch.png|500px|right|thumb|Логотип]]
[[Файл:Zdanie.jpg|300px|right|thumb|Корпус института. Томск, пр. Академический 2/3 (Академгородок)]]


[[Файл:Beydch.png|300px|right|thumb|]]
'''Институт сильноточной электроники Сибирского отделения РАН''' - один из институтов Томского научного центра Сибирского Отделения Академии Наук, расположен в [[Томский академгородок|Томске]]. Институт был основан в 1977 г. в томском Академгородке при непосредственном участии [[Месяц Геннадий Андреевич|Г.А. Месяца]], который и стал его первым директором. В ИСЭ СО РАН многие годы работают выпускники [[ТПУ|Томского политехнического института]]. Основными направлениями научной деятельности института являются разработка приборов сильноточной электроники, проблемы физической электроники, устройств и технологий, а также физика низкотемпературной плазмы и основы её применения в технологических процессах и другие современные проблемы физики плазмы. В настоящее время директор института - [[Ратахин Николай Александрович|Н.А. Ратахин]]


'''Институт сильноточной электроники Сибирского отделения РАН''' - один из институтов Томского научного центра Сибирского Отделения Академии Наук, расположен в Томске.
[[Файл:1581974696-200621-137598.jpg|300px|right|thumb|В лаборатории газовых лазеров ИСЭ СО РАН, установка THL-100. THL-100 - гибридная лазерная система, не имеющая мировых аналогов, на которой была достигнута рекордная для видимой области спектра пиковая мощность 40 триллионов ватт. Размещена в отделе импульсной техники]]


[[Файл:6d0804f9d1aa90ae531ea34921a8f946-800x.jpg|300px|right|thumb|]]
[[Файл:002 (1).jpg|300px|right|thumb|[[ГИТ-12|ГИТ-12]]]]
[[Файл:001.jpg|300px|right|thumb|[[ГИТ-12|ГИТ-12]] - один из крупнейших в мире мультитераваттных импульсных генераторов, размещен в лабораторном корпусе института, отдел импульсной техники]]
[[Файл:222 (1).jpg|300px|right|thumb|Интегрированная установка "RITM-SP» Чунцин, КНР, январь 2017 г. Установки "RITM-SP" предназначены для поверхностной обработки металлических материалов и изделий с целью улучшения их электрофизических, электрохимических и иных характеристик]]
[[Файл:111.jpg|300px|right|thumb|"RITM-SP-М» - Милан, Италия, октябрь 2018 г.]]
[[Файл:Oit (1).jpg|300px|right|thumb|Сотрудники ИСЭ СО РАН, 2002 г.]]
[[Файл:12078000.jpg|300px|right|thumb|[[Ратахин Николай Александрович|Н.А. Ратахин]] - директор ИСЭ СО РАН, в 2006 - 2017 гг. - заведующий кафедрой высоковольтной электрофизики и сильноточной электроники Института физики высоких технологий ТПУ, профессор отделения материаловедения ТПУ]]
==Создание института==
==Создание института==


В 1969г. на базе лаборатории электроники Научно-исследовательского института ядерной физики при ТПИ (ТПУ) был создан крупный отдел сильноточной электроники в составе Института оптики атмосферы (ИОА) СО АН СССР из 3-х лабораторий: импульсной техники, физической электроники и лазерной техники. В условиях бурно развивающейся высоковольтной электрофизики объем научных исследований в новом отделе значительно расширился. Наряду с разработкой генераторов мощных и сверхмощных электрических импульсов, получили развитие и другие научные направления: исследования физики электрических разрядов в вакууме и газе, исследования по созданию мощных импульсных газовых лазеров, формирование  электронных и ионных пучков. Развитие этих направлений стало возможным благодаря тесчному сотрудничеству и координации работ отдела с работой ученых вузов и научных учреждений  г. Томска: НИИ ЯФ, НИИ ВН, физиков ТПИ, ТГУ, ТИАСУРа. Расширено сотрудничество с ведущими научными центрами страны, где велись работы в области ускорительной и лазерной техники, сильноточной электроники, физики вакуумного и газового разрядов. Результаты исследований коллектива отдела нашли коллектива отдела нашли отражение в ряде монографий, опубликованных в 70-х гг., докладах и сообщениях сотрудников отдела на различных конференциях и симпозиумах, в т.ч. международных. Отдел стал признанным центром исследований в стране по сильноточной электронике.  
В 1969 г. на базе лаборатории электроники Научно-исследовательского института ядерной физики при [[ТПУ|Томском политехническом институте]] был создан крупный отдел сильноточной электроники в составе Института оптики атмосферы (ИОА) СО АН СССР из 3-х лабораторий: импульсной техники, физической электроники и лазерной техники. В условиях бурно развивающейся высоковольтной электрофизики объем научных исследований в новом отделе значительно расширился. Наряду с разработкой генераторов мощных и сверхмощных электрических импульсов, получили развитие и другие научные направления: исследования физики электрических разрядов в вакууме и газе, исследования по созданию мощных импульсных газовых лазеров, формирование  электронных и ионных пучков. Развитие этих направлений стало возможным благодаря тесчному сотрудничеству и координации работ отдела с работой ученых вузов и научных учреждений  г. Томска: [[НИИ ядерной физики при ТПУ|НИИ ЯФ]], [[НИИ высоких напряжений при ТПУ|НИИ ВН]], физиков [[ТПУ|ТПИ]], ТГУ, ТИАСУРа. Расширено сотрудничество с ведущими научными центрами страны, где велись работы в области ускорительной и лазерной техники, сильноточной электроники, физики вакуумного и газового разрядов. Результаты исследований коллектива отдела нашли коллектива отдела нашли отражение в ряде монографий, опубликованных в 70-х гг., докладах и сообщениях сотрудников отдела на различных конференциях и симпозиумах, в т.ч. международных. Отдел стал признанным центром исследований в стране по сильноточной электронике.  


В сентябре 1977г. отдел сильноточной электроники ИОА СО АН СССР был преобразован в самостоятельный Институт сильноточной электроники – ИСЭ СО АН СССР. Директором его стал доктор технических наук профессор Г.А. Месяц. Месяц доказывал необходимость создания такого института, организацию его работы и нашел в этом поддержку со стороны научной общественности, руководителей города и области, Президиума СО АН СССР. Благодаря этой поддержке было осуществлено строительство основного корпуса института, его производственных помещений, лабораторий, оснащение изх современным оборудованием, решены кадровые вопросы, социально-бытовые проблемы, расширен объем научных исследований. За короткий период времени коллектив института по результатам своей деятельности занял ведущее положение среди институтов СО АН СССР. [1; 295-296]
В сентябре 1977 г. отдел сильноточной электроники ИОА СО АН СССР был преобразован в самостоятельный Институт сильноточной электроники – ИСЭ СО АН СССР. Директором его стал доктор технических наук профессор [[Месяц Геннадий Андреевич|Г.А. Месяц]]. Месяц доказывал необходимость создания такого института, организацию его работы и нашел в этом поддержку со стороны научной общественности, руководителей города и области, Президиума СО АН СССР. Благодаря этой поддержке было осуществлено строительство основного корпуса института, его производственных помещений, лабораторий, оснащение изх современным оборудованием, решены кадровые вопросы, социально-бытовые проблемы, расширен объем научных исследований. За короткий период времени коллектив института по результатам своей деятельности занял ведущее положение среди институтов СО АН СССР.  


==Научные исследования==
==Научные исследования==
Строка 15: Строка 28:
'''Импульсная техника'''
'''Импульсная техника'''


Основа сильноточной электроники - мощная импульсная техника. Выдающийся вклад в развитие техники формирования мощных высоковольтных импульсов внесен лауреатом Государственных премий СССР и России академиком Борисом Михайловичем КОВАЛЬЧУКОМ. Многие идеи по созданию генераторов с импульсной трансформаторной зарядкой были предложены талантливым ученым и инженером, кандидатом технических наук Александром Степановичем ЕЛЬЧАНИНОВЫМ.
Основа сильноточной электроники - мощная импульсная техника. Выдающийся вклад в развитие техники формирования мощных высоковольтных импульсов внесен лауреатом Государственных премий СССР и России академиком [[Ковальчук Борис Михайлович|Борисом Михайловичем Ковальчуком]]. Многие идеи по созданию генераторов с импульсной трансформаторной зарядкой были предложены талантливым ученым и инженером, кандидатом технических наук Александром Степановичем ЕЛЬЧАНИНОВЫМ.


В отделе импульсной техники под руководством академика КОВАЛЬЧУКА разрабатываются крупнейшие электрофизические установки для фундаментальных исследований и отработки новых технологий. В их числе тераваттные генераторы ГИТ-12 и ГИТ-4, десятки других универсальных и специализированных устройств.
В отделе импульсной техники под руководством академика КОВАЛЬЧУКА разрабатываются крупнейшие электрофизические установки для фундаментальных исследований и отработки новых технологий. В их числе тераваттные генераторы ГИТ-12 и ГИТ-4, десятки других универсальных и специализированных устройств.
Строка 25: Строка 38:
'''Генерация мощных импульсов рентгеновского излучения,исследования экстремальных состояний вещества'''
'''Генерация мощных импульсов рентгеновского излучения,исследования экстремальных состояний вещества'''


Успехи в строительстве импульсных генераторов позволили Институту начать на высоком уровне физические исследования вещества в условиях высокой плотности вложенной энергии. Пионерские достижения в этой области связаны с именем лауреата Ленинской и Государственной премий Андрея Владимировича ЛУЧИНСКОГО. Сегодня работы в отделе высоких плотностей энергии продолжаются под руководством члена-корреспондента РАН Николая Александровича РАТАХИНА.
Успехи в строительстве импульсных генераторов позволили Институту начать на высоком уровне физические исследования вещества в условиях высокой плотности вложенной энергии. Пионерские достижения в этой области связаны с именем лауреата Ленинской и Государственной премий Андрея Владимировича ЛУЧИНСКОГО. Сегодня работы в отделе высоких плотностей энергии продолжаются под руководством члена-корреспондента РАН [[Ратахин Николай Александрович|Николая Александровича Ратахина]].


Исследования ведутся на крупнейших импульсных установках - генераторах ГИТ-12 и МИГ. В экспериментах по электродинамическому сжатию вещества удалось получить импульсные магнитные поля в десятки мегагаусс и давления на уровне ста мегабар. Впервые в лабораторных условиях продемонстрирована степень сжатия твердого вещества, характерная для ядерного взрыва. При сжатии многокаскадных лайнеров удалось добиться эффективной генерации К-излучения при больших - субмикросекундных - временах имплозии, получить эффективную генерацию жесткого излучения с энергией квантов до десяти килоэлектронвольт.
Исследования ведутся на крупнейших импульсных установках - генераторах ГИТ-12 и МИГ. В экспериментах по электродинамическому сжатию вещества удалось получить импульсные магнитные поля в десятки мегагаусс и давления на уровне ста мегабар. Впервые в лабораторных условиях продемонстрирована степень сжатия твердого вещества, характерная для ядерного взрыва. При сжатии многокаскадных лайнеров удалось добиться эффективной генерации К-излучения при больших - субмикросекундных - временах имплозии, получить эффективную генерацию жесткого излучения с энергией квантов до десяти килоэлектронвольт.
Строка 31: Строка 44:
'''Генерация мощных импульсов электромагнитного излучения'''
'''Генерация мощных импульсов электромагнитного излучения'''


Исследования по генерации мощных импульсов микроволнового излучения начались в Институте в 1977 году и уже вскоре увенчались созданием первого в мире импульсно-периодического СВЧ-генератора с импульсной мощностью более 100 мегаватт. За 30 лет под руководством Сергея Дмитриевича КОРОВИНА сложилась авторитетная научная школа по релятивистской сильноточной электронике.
Исследования по генерации мощных импульсов микроволнового излучения начались в Институте в 1977 году и уже вскоре увенчались созданием первого в мире импульсно-периодического СВЧ-генератора с импульсной мощностью более 100 мегаватт. За 30 лет под руководством [[Коровин Сергей Дмитриевич|Сергея Дмитриевича КОРОВИНА]] сложилась авторитетная научная школа по релятивистской сильноточной электронике.


Сегодня созданные в отделе физической электроники СВЧ-генераторы на основе сильноточных ускорителей "СИНУС" не имеют мировых аналогов. Освоены все известные механизмы генерации и основные типы СВЧ-приборов. На уникальном ускорителе СИНУС-7 получены мощности излучения до нескольких гигаватт. Созданы компактные источники сверхкоротких гигаваттных СВЧ-импульсов на основе эффекта сверхизлучения. Совместно с томскими биологами и медиками проводятся исследования влияния импульсно-периодических электромагнитных излучений на клетку.
Сегодня созданные в отделе физической электроники СВЧ-генераторы на основе сильноточных ускорителей "СИНУС" не имеют мировых аналогов. Освоены все известные механизмы генерации и основные типы СВЧ-приборов. На уникальном ускорителе СИНУС-7 получены мощности излучения до нескольких гигаватт. Созданы компактные источники сверхкоротких гигаваттных СВЧ-импульсов на основе эффекта сверхизлучения. Совместно с томскими биологами и медиками проводятся исследования влияния импульсно-периодических электромагнитных излучений на клетку.
Строка 45: Строка 58:
Взрывоэмиссионные катоды позволили генерировать импульсные электронные пучки недостижимых ранее мощностей. На их основе были созданы мощные импульсные лазеры, рентгеновские трубки, ускорители заряженных частиц. Было доказано, что взрывная эмиссия играет фундаментальную роль не только в вакуумном, но и в импульсном газовом разряде.
Взрывоэмиссионные катоды позволили генерировать импульсные электронные пучки недостижимых ранее мощностей. На их основе были созданы мощные импульсные лазеры, рентгеновские трубки, ускорители заряженных частиц. Было доказано, что взрывная эмиссия играет фундаментальную роль не только в вакуумном, но и в импульсном газовом разряде.


Процессы вакуумного пробоя более четверти века изучаются в лаборатории вакуумной электроники под руководством Заслуженного деятеля науки, профессора Дмитрия Ильича ПРОСКУРОВСКОГО. С 2006 года лабораторией руководит кандидат физ.-мат. наук Александр Владимирович БАТРАКОВ. Уникальный накопленный опыт, филигранная экспериментальная техника позволяют открывать новые стороны уже знакомых явлений. Так, в 2000 году был обнаружен объект в вакуумном разряде - капельное пятно.
Процессы вакуумного пробоя более четверти века изучаются в лаборатории вакуумной электроники под руководством Заслуженного деятеля науки, профессора Дмитрия Ильича ПРОСКУРОВСКОГО. С 2006 года лабораторией руководит кандидат физ.-мат. наук [[Батраков Александр Владимирович|Александр Владимирович БАТРАКОВ]]. Уникальный накопленный опыт, филигранная экспериментальная техника позволяют открывать новые стороны уже знакомых явлений. Так, в 2000 году был обнаружен объект в вакуумном разряде - капельное пятно.
Разработанные в лаборатории уникальные источники широкоапертурных импульсных электронных пучков нашли применение в технологиях увеличения электрической прочности вакуумной изоляции, модификации поверхности материалов. По лицензии Института в Японии выпущено около 100 установок для электронно-пучковой полировки металлических изделий.
Разработанные в лаборатории уникальные источники широкоапертурных импульсных электронных пучков нашли применение в технологиях увеличения электрической прочности вакуумной изоляции, модификации поверхности материалов. По лицензии Института в Японии выпущено около 100 установок для электронно-пучковой полировки металлических изделий.


Строка 60: Строка 73:
'''Генерация оптического излучения. Эксилампы, их применение'''
'''Генерация оптического излучения. Эксилампы, их применение'''


В 1990 году в лаборатории оптических излучений под руководством доктора физ.-мат. наук Виктора Федотовича ТАРАСЕНКО началась разработка эксиламп - нового класса источников ультрафиолетового излучения, использующих узкополосное неравновесное спонтанное излучение эксимерных или эксиплексных молекул.
В 1990 году в лаборатории оптических излучений под руководством доктора физ.-мат. наук [[Тарасенко Виктор Федотович|Виктора Федотовича ТАРАСЕНКО]] началась разработка эксиламп - нового класса источников ультрафиолетового излучения, использующих узкополосное неравновесное спонтанное излучение эксимерных или эксиплексных молекул.


Сегодня эксилампы находят широкое применение в микроэлектронике, фотохимии и аналитической химии. Имеются перспективы использования их излучения в нефтегазовой промышленности, фитобиологии, технологиях фотосинтеза, показана его эффективность при лечении кожных заболеваний.
Сегодня эксилампы находят широкое применение в микроэлектронике, фотохимии и аналитической химии. Имеются перспективы использования их излучения в нефтегазовой промышленности, фитобиологии, технологиях фотосинтеза, показана его эффективность при лечении кожных заболеваний.
Строка 71: Строка 84:
'''Источники плазмы и ионных пучков. Электронно-ионно-плазменные технологии модификации поверхности материалов и изделий'''
'''Источники плазмы и ионных пучков. Электронно-ионно-плазменные технологии модификации поверхности материалов и изделий'''


Основателем научного направления плазменной эмиссионной электроники по праву следует считать профессора, доктора технических наук Юлия Ефимовича КРЕЙНДЕЛЯ. Его преемником стал Заслуженный деятель науки доктор физико-математических Петр Максимович ЩАНИН.
Основателем научного направления плазменной эмиссионной электроники по праву следует считать профессора, доктора технических наук [[Крейндель Юлий Ефимович|Юлия Ефимовича КРЕЙНДЕЛЯ]]. Его преемником стал Заслуженный деятель науки доктор физико-математических [[Щанин Петр Максимович|Петр Максимович ЩАНИН]].


Сегодня лаборатории плазменной эмиссионной электроники под руководством доктора технических наук Николай Николаевича КОВАЛЯ ведутся фундаментальные работы по поиску новых форм разрядов низкого давления, генерации плазмы в больших объемах, разрабатываются новые плазменные источники заряженных частиц. Одновременно проводятся работы по изучению воздействия плазмы и концентрированных потоков электронов на поверхность материалов с целью улучшения их физико-химических и эксплуатационных свойств.
Сегодня лаборатории плазменной эмиссионной электроники под руководством доктора технических наук Николай Николаевича КОВАЛЯ ведутся фундаментальные работы по поиску новых форм разрядов низкого давления, генерации плазмы в больших объемах, разрабатываются новые плазменные источники заряженных частиц. Одновременно проводятся работы по изучению воздействия плазмы и концентрированных потоков электронов на поверхность материалов с целью улучшения их физико-химических и эксплуатационных свойств.
Строка 90: Строка 103:
'''Взаимодействие с вузами'''
'''Взаимодействие с вузами'''


Лабораторию теоретической физики ИСЭ традиционно возглавляют профессора Томского государственного университета. Первый ее заведующий - профессор Владислав Гаврилович БАГРОВ. Сегодня лабораторию возглавляет Андрей Владимирович КОЗЫРЕВ, заведующий кафедрой физики плазмы ТГУ. Основанная в 1984 году Геннадием Андреевичем МЕСЯЦЕМ, кафедра является основным поставщиком молодых исследователей для Института.
Лабораторию теоретической физики ИСЭ традиционно возглавляют профессора Томского государственного университета. Первый ее заведующий - профессор [[Багров Владислав Гавриилович|Владислав Гавриилович БАГРОВ]]. Сегодня лабораторию возглавляет Андрей Владимирович КОЗЫРЕВ, заведующий кафедрой физики плазмы ТГУ. Основанная в 1984 году Геннадием Андреевичем МЕСЯЦЕМ, кафедра является основным поставщиком молодых исследователей для Института.


Основные кузницы инженерных кадров ИСЭ - Томский политехнический университет и Томской государственный университет систем управления и радиоэлектроники. В конце 2004 года в составе электрофизического факультета ТПУ была создана кафедра сильноточной электроники.
Основные кузницы инженерных кадров ИСЭ - Томский политехнический университет и Томской государственный университет систем управления и радиоэлектроники. В конце 2004 года в составе [[Электрофизический факультет|электрофизического]] факультета [[ТПУ|ТПУ]] была создана кафедра сильноточной электроники.
Традиционным стало участие Института в организации крупных научных форумов. В 2000 и 2006 г. в Томске были проведены Международные конгрессы по радиационной физике, сильноточной электронике и модификации материалов пучками частиц и потоками плазмы.
Традиционным стало участие Института в организации крупных научных форумов. В 2000 и 2006 г. в Томске были проведены Международные конгрессы по радиационной физике, сильноточной электронике и модификации материалов пучками частиц и потоками плазмы.


30 лет жизни Института принесли ему двенадцать премий СССР и России, престижные международные премии. Научный руководитель Института академик МЕСЯЦ был удостоен международной премии "Глобальная энергия". [2]
30 лет жизни Института принесли ему двенадцать премий СССР и России, престижные международные премии. Научный руководитель Института академик МЕСЯЦ был удостоен международной премии "Глобальная энергия".  


Основными итогами деятельности ИСЭ стали следующие:
Основными итогами деятельности ИСЭ стали следующие:
Строка 116: Строка 129:
В период до 1990-х гг. фундаментальные научные исследования в Институте сильноточной электроники пользовались значительным вниманием государства и находили достаточно обширное и быстрое применение в промышленности и оборонной отрасти. В 1990-е годы, несмотря на сложную экономическую ситуацию в стране, темпы и качество проводимых в ИСЭ научных исследований не снизились, а тематика исследований заметно расширилась. Институту удалось сохранить стабильность за счет активного самостоятельного поиска партнеров и заказчиков научных исследований - в значительной мере, за рубежом.
В период до 1990-х гг. фундаментальные научные исследования в Институте сильноточной электроники пользовались значительным вниманием государства и находили достаточно обширное и быстрое применение в промышленности и оборонной отрасти. В 1990-е годы, несмотря на сложную экономическую ситуацию в стране, темпы и качество проводимых в ИСЭ научных исследований не снизились, а тематика исследований заметно расширилась. Институту удалось сохранить стабильность за счет активного самостоятельного поиска партнеров и заказчиков научных исследований - в значительной мере, за рубежом.


За период с начала 1990-х гг. в ИСЭ СО РАН накоплен большой объем новых фундаментальных научных результатов, доведенных до стадии НИОКР и готовых к практическому внедрению в России.[3]
За период с начала 1990-х гг. в ИСЭ СО РАН накоплен большой объем новых фундаментальных научных результатов, доведенных до стадии НИОКР и готовых к практическому внедрению в России.


==Г.А. Месяц==
==[[Месяц Геннадий Андреевич|Г.А. Месяц]]==


[[Файл:Mesaz2.jpg|250px|right|thumb|]]
[[Файл:Mesaz2.jpg|200px|right|thumb|]]
   
   
(р. 28.02.1936г.).
(р. 28.02.1936г.).
Окончил электроэнергетический факультет ТПИ (ТПУ) в 1958г. Доктор технических наук, профессор. Академик РАН.  
Окончил электроэнергетический факультет [[ТПУ|ТПИ]] в 1958 г. Доктор технических наук, профессор. Академик РАН.  
Организатор и директиор ИСЭ СО АН СССР в 1977-1986гг.  
Организатор и директиор ИСЭ СО АН СССР в 1977 - 1986 гг.  


Под его руководством в этом институте были продолжены фундаментальные исследования в области получения интенсивных пучков заряженных частиц и разработки приборов, в которых используются эти пучки. Получение электронных пучков разной длительности и формы – одна из основных задач сильноточной электроники. Прежние методы их получения, связанные с термоэлектронной, автоэлектронной эмиссиями, оказались неприемлемы. На помощь пришла взрывная электронная эмиссия. В 1982 г. была доказана возможность получения мощных пучков не только наносекундной, но и микросекундной длительности и сечением более 1 м2. В Институте был создан самый мощный в стране микросекундный ускоритель электронов с трубчатым пучком. В отделе Ю. И. Бычкова были получены принципиально новые результаты по лазерной технике, разработаны методы создания устойчивых объемных разрядов при высоком давлении газа, которые лежат в основе накачки мощных газовых лазеров, решены также многие др. проблемы, связанные с энергетикой таких систем. Эти работы привели к появлению нового направления – инжекционной газовой электроники.  
Под его руководством в этом институте были продолжены фундаментальные исследования в области получения интенсивных пучков заряженных частиц и разработки приборов, в которых используются эти пучки. Получение электронных пучков разной длительности и формы – одна из основных задач сильноточной электроники. Прежние методы их получения, связанные с термоэлектронной, автоэлектронной эмиссиями, оказались неприемлемы. На помощь пришла взрывная электронная эмиссия. В 1982 г. была доказана возможность получения мощных пучков не только наносекундной, но и микросекундной длительности и сечением более 1 м2. В Институте был создан самый мощный в стране микросекундный ускоритель электронов с трубчатым пучком. В отделе Ю. И. Бычкова были получены принципиально новые результаты по лазерной технике, разработаны методы создания устойчивых объемных разрядов при высоком давлении газа, которые лежат в основе накачки мощных газовых лазеров, решены также многие др. проблемы, связанные с энергетикой таких систем. Эти работы привели к появлению нового направления – инжекционной газовой электроники.  


Исследования руководителя лаборатории профессора ТПИ Д. И. Вайсбурда в области физики твердого тела открыли целый ряд новых физических явлений: новый вид свечения диэлектриков, внутризонная люминисценция, новый вид электрической проводимости диэлектриков и др. Все это положило начало еще одному новому направлению – высокоэнергетической электронике твердого тела.  
Исследования руководителя лаборатории профессора ТПИ [[Вайсбурд Давид Израйлевич|Д. И. Вайсбурда]] в области [[Физика твердого тела|физики твердого тела]] открыли целый ряд новых физических явлений: новый вид свечения диэлектриков, внутризонная люминисценция, новый вид электрической проводимости диэлектриков и др. Все это положило начало еще одному новому направлению – высокоэнергетической электронике твердого тела.  


Открытие взрывной эмиссии электронов и развитие мощной импульсной техники способствовали возникновению релятивистской высокочастотной электроники. Совместно с учеными МГУ были проведены исследования по генерации СВЧ-излучения в сверхразмерных волноводах, установлена возможность получения его с высокой энергетической эффективностью. Доказана перспективность использования сверхпроводящих магнитов для улучшения работы СВЧ-устройств.  
Открытие взрывной эмиссии электронов и развитие мощной импульсной техники способствовали возникновению релятивистской высокочастотной электроники. Совместно с учеными МГУ были проведены исследования по генерации СВЧ-излучения в сверхразмерных волноводах, установлена возможность получения его с высокой энергетической эффективностью. Доказана перспективность использования сверхпроводящих магнитов для улучшения работы СВЧ-устройств.  
Строка 134: Строка 147:
Коллективом Института был создан ряд уникальных приборов и испытательных стендов, которые нашли широкое применение в научных исследованиях и промышленности. Это удалось сделать благодаря связям института с заинтересованными организациями. В Институте были созданы 3 отраслевые лаборатории, которые сыграли важную роль во внедрении научных идей в производсво. Так, на протяжении ряда лет шло успешное сотрудничество с Ленинград. НПО «Буревестник» по созданию импульсных малогабаритных рентгеновских аппаратов. Разработки были доведены до серийного производства. В это же время на 35 предприятиях страны были внедрены, созданные в институте или по его разработке, плазменные электронно-лучевые системы. В отделе сильноточной электроники СКБ НПО «Оптика» СО АН СССР на основе концепции взрывной эмиссии созданы малогабаритные рантгеновские дефектоскопы «Рита» и «Радан» для неразрушающего контроля сварных швов при строительстве и ремонте магистральных газопроводов, компрессорных станций. Совместно с ТУСУРом под руководством профессора Ю. Е. Крейнделя разработаны новые источники электронов с плазменными эмиттерами и создан принципиально новый класс импульсных сварочных устройств.  
Коллективом Института был создан ряд уникальных приборов и испытательных стендов, которые нашли широкое применение в научных исследованиях и промышленности. Это удалось сделать благодаря связям института с заинтересованными организациями. В Институте были созданы 3 отраслевые лаборатории, которые сыграли важную роль во внедрении научных идей в производсво. Так, на протяжении ряда лет шло успешное сотрудничество с Ленинград. НПО «Буревестник» по созданию импульсных малогабаритных рентгеновских аппаратов. Разработки были доведены до серийного производства. В это же время на 35 предприятиях страны были внедрены, созданные в институте или по его разработке, плазменные электронно-лучевые системы. В отделе сильноточной электроники СКБ НПО «Оптика» СО АН СССР на основе концепции взрывной эмиссии созданы малогабаритные рантгеновские дефектоскопы «Рита» и «Радан» для неразрушающего контроля сварных швов при строительстве и ремонте магистральных газопроводов, компрессорных станций. Совместно с ТУСУРом под руководством профессора Ю. Е. Крейнделя разработаны новые источники электронов с плазменными эмиттерами и создан принципиально новый класс импульсных сварочных устройств.  


В ИСЭ был создан оргинальный технологический стенд мощностью в 100 киловатт, позволяющий проводить сварку изделий, термообработку, спекание порошков различных типов. Стенд использовался специалистами на ряде предприятий г. Томска.  
В ИСЭ был создан оргинальный технологический стенд мощностью в 100 киловат, позволяющий проводить сварку изделий, термообработку, спекание порошков различных типов. Стенд использовался специалистами на ряде предприятий г. Томска.  


ИСЭ были установлены тесные связи, заключен договор о совместных работах с Киевским институтом электросварки (академик Е. Б. Патон). По их опыту в ИСЭ в 1986 г. был создан Межотраслевой инженерный центр по лучевой технологии. Перед ним были поставлены задачи по разработке электронных, рентгеновских и ионных, лазерных источников излучения для различных технологических целей: резка металла, пайка, сварка, термообработка, производство полупроводников и др. Составной частью центра стала демонстрационная лаборатория для ознакомления представителей промышленных предприятий с возможностями института. [1; 296-298]
ИСЭ были установлены тесные связи, заключен договор о совместных работах с Киевским институтом электросварки (академик Е. Б. Патон). По их опыту в ИСЭ в 1986 г. был создан Межотраслевой инженерный центр по лучевой технологии. Перед ним были поставлены задачи по разработке электронных, рентгеновских и ионных, лазерных источников излучения для различных технологических целей: резка металла, пайка, сварка, термообработка, производство полупроводников и др. Составной частью центра стала демонстрационная лаборатория для ознакомления представителей промышленных предприятий с возможностями института.


==С.П. Бугаев==
==[[Бугаев Сергей Петрович|С.П. Бугаев]]==


[[Файл:Bugaev.jpg|200px|right|thumb|]]
[[Файл:Bugaev.jpg|150px|right|thumb|]]
   
   
(3/08/1936-3/04/2002), физик, академик РАН.     
(3/08/1936-3/04/2002), физик, академик РАН.     
Окончил радиотехнический факультет ТПИ (1959). Кандидат технических наук (1967). Доктор техн. наук. (1976).
Окончил радиотехнический факультет ТПИ (1959). Кандидат технических наук (1967). Доктор техн. наук. (1976).


1986-2002 директор Института сильноточной электроники СО РАН. [5]  
1986-2002 директор Института сильноточной электроники СО РАН.
 
[[Бугаев Сергей Петрович|С.П.Бугаев]] наряду с академиком [[Месяц Геннадий Андреевич|Г.А.Месяцем]] и рядом других сотрудников ИСЭ СО РАН, является соавтором открытия взрывной электронной эмиссии. Открытия, прославившего Томскую школу физиков и положившего начало новой науке — сильноточной электронике. И вся научная деятельность Сергея Петровича была связана с ее дальнейшим развитием. Им впервые было показано, что скользящий разряд по диэлектрику в вакууме развивается в слое адсорбированного газа, доказана ведущая роль взрывной эмиссии электронов в инициировании таких разрядов. Этот механизм в дальнейшем был подтвержден многими исследователями. Он внес большой вклад в решение проблемы генерирования сильноточных электронных пучков с использованием холодных катодов. На основе проведенных им исследований перекрытия диэлектриков в вакууме ученый впервые предложил использовать металло-диэлектрические катоды. В модельных экспериментах им впервые были исследованы физические явления в сильноточных диодах со взрывной эмиссией, свойства катодной и анодной плазмы и влияние этой плазмы в диоде на характеристики пучка электронов в ускорителе. Впервые изучены закономерности формирования структуры таких электронных пучков. Результаты исследований по генерированию электронных пучков большого сечения обобщены в монографии "Электронные пучки большого сечения" (1984 г.). На базе исследований ионных потоков из разрядов низкого давления с его участием были разработаны источники газовых и металлических ионов для сильноточной ионной имплантации.


С.П.Бугаев наряду с академиком Г.А.Месяцем и рядом других сотрудников ИСЭ СО РАН, является соавтором открытия взрывной электронной эмиссии. Открытия, прославившего Томскую школу физиков и положившего начало новой науке — сильноточной электронике. И вся научная деятельность Сергея Петровича была связана с ее дальнейшим развитием. Им впервые было показано, что скользящий разряд по диэлектрику в вакууме развивается в слое адсорбированного газа, доказана ведущая роль взрывной эмиссии электронов в инициировании таких разрядов. Этот механизм в дальнейшем был подтвержден многими исследователями. Он внес большой вклад в решение проблемы генерирования сильноточных электронных пучков с использованием холодных катодов. На основе проведенных им исследований перекрытия диэлектриков в вакууме ученый впервые предложил использовать металло-диэлектрические катоды. В модельных экспериментах им впервые были исследованы физические явления в сильноточных диодах со взрывной эмиссией, свойства катодной и анодной плазмы и влияние этой плазмы в диоде на характеристики пучка электронов в ускорителе. Впервые изучены закономерности формирования структуры таких электронных пучков. Результаты исследований по генерированию электронных пучков большого сечения обобщены в монографии "Электронные пучки большого сечения" (1984 г.). На базе исследований ионных потоков из разрядов низкого давления с его участием были разработаны источники газовых и металлических ионов для сильноточной ионной имплантации.  
Им были получены важные результаты при исследовании формирования сильноточных полых цилиндрических электронных потоков в коаксиальных диодах с магнитной изоляцией для приборов релятивистской высокочастотной электроники. Впервые установлены соотношения для тока в области ускорения такого диода. Показано, что ток в диоде с магнитной изоляцией определяется ускоряющей областью диода, а не предельным током пространства дрейфа. Результаты исследований физических явлений в коаксиальных диодах с магнитной изоляцией, а также результаты по генерации мощных импульсов микроволнового излучения были обобщены в монографии "Релятивистские многоволновые СВЧ-генераторы" (1991 г.).  


Им были получены важные результаты при исследовании формирования сильноточных полых цилиндрических электронных потоков в коаксиальных диодах с магнитной изоляцией для приборов релятивистской высокочастотной электроники. Впервые установлены соотношения для тока в области ускорения такого диода. Показано, что ток в диоде с магнитной изоляцией определяется ускоряющей областью диода, а не предельным током пространства дрейфа. Результаты исследований физических явлений в коаксиальных диодах с магнитной изоляцией, а также результаты по генерации мощных импульсов микроволнового излучения были обобщены в монографии "Релятивистские многоволновые СВЧ-генераторы" (1991 г.). [6]  
==[[Ковальчук Борис Михайлович|Б.М. Ковальчук]]==


==Б.М. Ковальчук==
[[Файл:Kovalchuk2.jpg|150px|right|thumb|]]


[[Файл:Kovalchuk2.jpg|200px|right|thumb|]]
Р.10.04.1940 г. Академик РАН. Действительный член РАН (1992), член-корреспондент АН СССР (1987), доктор технических наук (1979). Окончил электроэнергетический факультет [[ТПУ|Томского политехнического института]] в 1962 г.


Выдающийся ученый в области импульсной энергетики, создатель ряда сверхмощных электрофизических установок национального и международного масштаба. С его непосредственным участием в 1970-е годы были заложены основы нового научного направления - физики и техники генерирования мощных электрических импульсов. Под руководством Б. М. Ковальчука созданы первый отечественный сильноточный ускоритель электронов, первые отечественные сверхмощные газовые лазеры, первый импульсный генератор с индуктивным накопителем энергии и плазменным прерывателем тока. Среди осуществленных им проектов - мультитераваттный импульсный генератор ГИТ-12. Без непосредственного участия и консультаций Б. М. Ковальчука не обходится ни один крупный отечественный или международный проект по созданию мощных импульсных генераторов. В последние годы Б. М. Ковальчуком с сотрудниками выполнены работы, направленные на совершенствование элементной базы мощной импульсной техники. Созданы многокулонные газоразрядные импульсные коммутаторы с высоким ресурсом, обеспечивающие включение конденсаторных батарей с мегаджоульным энергозапасом. На их основе созданы модули источников питания для мощных импульсных твердотельных лазеров, предназначенных для использования в системе лазерного инерциального термоядерного синтеза. Разработана новая концепция построения сверхмощных импульсных генераторов на основе линейного трансформатора, позволившая радикально увеличить удельный энергозапас генераторов и упростить их строительство. Данная концепция рассматривается в качестве базы для построения импульсного генератора нового поколения для ИТС на основе Z-пинча. Разработаны многочисленные импульсные генераторы для иных практических применений. Б. М. Ковальчук - заведующий отделом импульсной техники Института сильноточной электроники СО РАН, член Отделения энергетики, машиностроения, механики и процессов управления РАН, член Объединенного ученого совета по физико-техническим наукам СО РАН. [8]
Выдающийся ученый в области импульсной энергетики, создатель ряда сверхмощных электрофизических установок национального и международного масштаба. С его непосредственным участием в 1970-е годы были заложены основы нового научного направления - физики и техники генерирования мощных электрических импульсов. Под руководством [[Ковальчук Борис Михайлович|Б. М. Ковальчука]] созданы первый отечественный сильноточный ускоритель электронов, первые отечественные сверхмощные газовые лазеры, первый импульсный генератор с индуктивным накопителем энергии и плазменным прерывателем тока. Среди осуществленных им проектов - мультитераваттный импульсный генератор ГИТ-12. Без непосредственного участия и консультаций [[Ковальчук Борис Михайлович|Б. М. Ковальчука]] не обходится ни один крупный отечественный или международный проект по созданию мощных импульсных генераторов. В последние годы [[Ковальчук Борис Михайлович|Б. М. Ковальчуком]] с сотрудниками выполнены работы, направленные на совершенствование элементной базы мощной импульсной техники. Созданы многокулонные газоразрядные импульсные коммутаторы с высоким ресурсом, обеспечивающие включение конденсаторных батарей с мегаджоульным энергозапасом. На их основе созданы модули источников питания для мощных импульсных твердотельных лазеров, предназначенных для использования в системе лазерного инерциального термоядерного синтеза. Разработана новая концепция построения сверхмощных импульсных генераторов на основе линейного трансформатора, позволившая радикально увеличить удельный энергозапас генераторов и упростить их строительство. Данная концепция рассматривается в качестве базы для построения импульсного генератора нового поколения для ИТС на основе Z-пинча. Разработаны многочисленные импульсные генераторы для иных практических применений. [[Ковальчук Борис Михайлович|Б. М. Ковальчук]] - заведующий отделом импульсной техники Института сильноточной электроники СО РАН, член Отделения энергетики, машиностроения, механики и процессов управления РАН, член Объединенного ученого совета по физико-техническим наукам СО РАН.  


==Современность==
==Современность==
Строка 169: Строка 184:
В институте сформировалась научная школа по высокочастотной электронике, развивающая принципиально новые методы генерации и усиления электромагнитного излучения за счет взаимодействия плотных электронных пучков с полем бегущей волны. На установках Института реализованы рекордные мощности высоконаправленного СВЧ-излучения, используемого в фундаментальных исследованиях и прикладных целях  
В институте сформировалась научная школа по высокочастотной электронике, развивающая принципиально новые методы генерации и усиления электромагнитного излучения за счет взаимодействия плотных электронных пучков с полем бегущей волны. На установках Института реализованы рекордные мощности высоконаправленного СВЧ-излучения, используемого в фундаментальных исследованиях и прикладных целях  


Большое прикладное значение приобретают современные технологии обработки материалов. Здесь речь идет о воздействии на материалы мощными потоками оптического, СВЧ и рентгеновского излучения, высокоинтенсивными пучками заряженных частиц и потоками плазмы. Эти методы воздействия лежат в основе перспективных технологий нанесения декоративных и функциональных покрытий на изделия из металлов и диэлектриков [9]
Большое прикладное значение приобретают современные технологии обработки материалов. Здесь речь идет о воздействии на материалы мощными потоками оптического, СВЧ и рентгеновского излучения, высокоинтенсивными пучками заряженных частиц и потоками плазмы. Эти методы воздействия лежат в основе перспективных технологий нанесения декоративных и функциональных покрытий на изделия из металлов и диэлектриков.


'''Основные направления научной деятельности ИСЭ СО РАН'''
'''Основные направления научной деятельности ИСЭ СО РАН'''
Строка 190: Строка 205:
В области нанотехнологий:
В области нанотехнологий:


Разработка физических основ электронно-ионно-плазменных технологий получения наноструктурированных поверхностных слоев и покрытий на материалах и изделиях с целью улучшения их физико-химических и функциональных характеристик при применении в промышленности, биологии, медицине. [3]
Разработка физических основ электронно-ионно-плазменных технологий получения наноструктурированных поверхностных слоев и покрытий на материалах и изделиях с целью улучшения их физико-химических и функциональных характеристик при применении в промышленности, биологии, медицине.  


==Источники==
==Источники==


1. Гагарин А.В. Биографический справочник «Профессора Томского политехнического университета»: Том 3, часть 1- Томск: Изд-во ТПУ, 2005-326 стр.
1. [[Гагарин Александр Вячеславович|Гагарин А.В.]] «Профессора [[ТПУ|Томского политехнического университета]]». Т.3, ч. 1- Томск: Изд-во ТПУ, 2005.


2. http://www.hcei.tsc.ru/ru/cat/history/history.html
2. http://www.hcei.tsc.ru/ru/cat/history/history.html
Строка 200: Строка 215:
3. http://www.hcei.tsc.ru/ru/cat/fields/fields.html#pp
3. http://www.hcei.tsc.ru/ru/cat/fields/fields.html#pp


4. http://www.ng.ru/politics/2000-06-08/3_academia.html
4.     http://www.biznes-portal.com/New.aspx?newid=27294
 
5. http://www.tsc.ru/ru/about/history/bugaev.html
 
6. http://www-sbras.nsc.ru/HBC/2002/n15/f20.html


7. http://www.prometeus.nsc.ru/science/calendar/2010/kovalch.ssi
5.     https://subscribe.ru/group/kosmos-galaktiki-nlo-i-inoplanetyane/16314583/


8. http://www.hcei.tsc.ru/ru/cat/personals/kovalchuk/kovalchuk.html
6.     https://thepresentation.ru/uncategorized/130147-programma-prezidiuma-ran-otdelenie-nanotehnologiy-i-informatsionnyh-tehnologiyproekt-n-274fizicheskie-osnovy-elektronno-puchkovoy-nanostrukturizatsii-metallov-i-splavov-rukovoditel-proekta-dtn-koval-nikolay-nikolaevicho


9. http://ou.tsu.ru/about/members/member.php?p=isesoran
7.     http://www.tsc.ru/ru/news/nw_0431.html


10. http://ou.tsu.ru/about/members/member.php?p=isesoran
8.     https://hcei.tsc.ru/ru/nauka/ustanovki/git-12.html


11. http://www.atomic-energy.ru/list/organizations/top?page=51
9. https://ru.wikipedia.org/wiki/%D0%98%D0%BD%D1%81%D1%82%D0%B8%D1%82%D1%83%D1%82_%D1%81%D0%B8%D0%BB%D1%8C%D0%BD%D0%BE%D1%82%D0%BE%D1%87%D0%BD%D0%BE%D0%B9_%D1%8D%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%B8%D0%BA%D0%B8_%D0%A1%D0%9E_%D0%A0%D0%90%D0%9D


12. http://www.tsc.ru/ru/about/history/bugaev.html
[[Категория:Научно-исследовательские институты]]

Навигация